例題1 (X−1) |
4 |
(X+2) |
3 |
の展開式における、X |
5 |
の係数を求めよ。 |
|
X |
5 |
=1・X |
5 |
=X・X |
4 |
=X |
2 |
・X |
3 |
(逆もある) となる次数を考えればよい。 |
4 |
C |
2 |
・ |
3 |
C |
3 |
− |
4 |
C |
3 |
・2 |
3 |
C |
1 |
+ |
4 |
C |
4 |
・4 |
3 |
C |
3 |
=−14 |
(1) |
n |
C |
1 |
+2 |
n |
C |
2 |
+3 |
n |
C |
3 |
+・・・・・+n |
n |
C |
n |
=n2 |
n-1 |
(2) |
n |
C |
0 |
− |
1
2 |
n |
C |
1 |
+ |
1
3 |
n |
C |
2 |
−・・・・・+(−1) |
n
|
1 .
n+1 |
n |
C |
n |
= |
1 .
n+1 |
|
(1) |
(1+X) |
n |
= |
n |
C |
0 |
+ |
n |
C |
1 |
X+ |
n |
C |
2 |
X |
2 |
+ |
n |
C |
3 |
X |
3 |
+・・・・・+ |
n |
C |
n |
X |
n |
(1+X) |
n-1 |
= |
n-1 |
C |
0 |
+ |
n-1 |
C |
1 |
X+ |
n-1 |
C |
2 |
X |
2 |
+ |
n-1 |
C |
3 |
X |
3 |
+・・・・・+ |
n-1 |
C |
n-1 |
X |
n-1 |
・・・(ア) |
左辺の一般項=k |
n |
C |
k |
=k |
n! .
(n−k)!k! |
=n |
(n−1)! .
(n−k)!(k−1)! |
=n |
n-1 |
C |
k-1 |
なので、 |
与式の左辺=n( |
n-1 |
C |
0 |
+ |
n-1 |
C |
1 |
+ |
n-1 |
C |
2 |
+・・・・・+ |
n-1 |
C |
n-1 |
) |
. |
n-1 |
C |
0 |
+ |
n-1 |
C |
1 |
+ |
n-1 |
C |
2 |
+・・・・・+ |
n-1 |
C |
n-1 |
=2 |
n-1 |
(2) |
1
k |
n |
C |
k-1 |
= |
1
k |
・ |
n! .
(k−1)!(n−k+1)! |
= |
1 .
n+1 |
・ |
(n+1)! .
k!(n+1−k)! |
= |
1 .
n+1 |
n+1 |
C |
k |
より |
与式の左辺= |
1 .
n+1 |
( |
n+1 |
C |
1 |
− |
n+1 |
C |
2 |
+ |
n+1 |
C |
3 |
−・・・・・+(−1) |
n
|
n+1 |
C |
n+1 |
) |
(1+X) |
n+1 |
= |
n+1 |
C |
0 |
+ |
n+1 |
C |
1 |
X+ |
n+1 |
C |
2 |
X |
2 |
+ |
n+1 |
C |
3 |
X |
3 |
+・・・・・+ |
n+1 |
C |
n+1 |
X |
n+1 |
・・・(イ) |
0= |
n+1 |
C |
0 |
− |
n+1 |
C |
1 |
+ |
n+1 |
C |
2 |
− |
n+1 |
C |
3 |
+・・・・・+(−1) |
n+1 |
n+1 |
C |
n+1 |
より |
n+1 |
C |
0 |
= |
n+1 |
C |
1 |
− |
n+1 |
C |
2 |
+ |
n+1 |
C |
3 |
−・・・・・+(−1) |
n |
n+1 |
C |
n+1 |
となる。 |
ここで n+1 |
C |
0 |
=1 であるから、与式は成り立つ。 |
別解(一般的にはこの解法のほうがやり易い。)
(1) (1+X) |
n |
= |
n |
C |
0 |
+ |
n |
C |
1 |
X+ |
n |
C |
2 |
X |
2 |
+ |
n |
C |
3 |
X |
3 |
+・・・・・+ |
n |
C |
n |
X |
n |
n(1+X) |
n-1 |
= |
n |
C |
1 |
+2 |
n |
C |
2 |
X |
+3 |
n |
C |
3 |
X |
2 |
+・・・・・+n |
n |
C |
n |
X |
n-1 |
ここで、X=1 を代入すると |
n |
C |
1 |
+2 |
n |
C |
2 |
+3 |
n |
C |
3 |
+・・・・・+n |
n |
C |
n |
=n2 |
n-1 |
(2) (1+X) |
n |
= |
n |
C |
0 |
+ |
n |
C |
1 |
X+ |
n |
C |
2 |
X |
2 |
+ |
n |
C |
3 |
X |
3 |
+・・・・・+ |
n |
C |
n |
X |
n |
. |
|
0
-1 |
(1+X) |
n
|
dx |
= |
|
0
-1 |
( |
n |
C |
0 |
+ |
n |
C |
1 |
X+ |
n |
C |
2 |
X |
2
|
+ |
n |
C |
3 |
X |
3
|
+・・・・・+ |
n |
C |
n |
X |
n
|
) |
dx |
|