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Abstract Any sequence {x1, x2, · · · , xT } of integers fulfilling 0 ≤ xj < z for all j and for an integer
z ≥ 2 may be identified with a period of the base-z numeral representation of an irreducible fraction
n/d = 0.ẋ1x2 · · · ẋT with 0 < n < d. The division process for n/d implies that the quotient xj is large
or small in accordance with the preceding remainder rj , as the estimate 0 < rj/d − xj/z < 1/z

shows precisely. This plain fact is notable in two respects for large d and z. The one is that noted
remainders

{r1 = n, r2, r3, · · · } ≡ {n, nz, nz2, · · · } ≡ n{1, z, z2, · · · } ≡: n <z> mod (d)

are integers in (0, d) produced by the multiplicative congruential random number generator with
modulus d and multiplier z. The other is that {xj/z| j = 1, 2, · · · } may be any sample of uniform
and independent random numbers, truncated to a suitable precision so as to give an integer xj .
Thus, the multiplicative congruential method is the central existence among uniform random
number generators, as a representative of all others to within a prescribed precision 1/z. We thus
examined anew the reduced residue class group Z∗

d formed by integers coprime to a composite
modulus d, and found a vein of ingenious, non-linear shuffling associated with Chinese remainder
theorem that composes the cyclic subgroup <z>= {1, z, z2, · · · } or any of its coset n<z> in Z∗

d from
component cyclic (sub)groups or their respective cosets. The full comprehension of the mechanism
reveals novel prescriptions that will furnish computers feasibly with simple, fast and spectrally tested
generators of uniform and independent random numbers which will have amply long periods and
high precision, together with the freedom from improbable symmetry restrictions on the geometry
of points they generate.

1. Introduction and summary

Random number generators on computers are restricted by the requirement that they should be
reproducible and transportable; they should generate identical sequences any number of times on
demands of users performing simulations, and should also do so on different computers as well.

1Mail address: h-nkzw@lapis.plala.or.jp.
2Mail address: nao-nkzw@cpost.plala.or.jp.
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Random number generators on computers should thus deal exclusively with sequences of integers
whose arithmetic is free from truncation or round off error. This report aims to show the existence of
a novel way in the line to equip computers with fast generators for uniform and independent
random numbers, with amply long period and high numerical precision, together with statistical
properties ensured by spectral tests. Even the geometry of points, formed by consecutive numbers
they generate, will be controllable so as to be freed of improbable symmetry restrictions.

Noted generators belong to the class of multiplicative congruential method of Lehmer.3 This is a
choice motivated by simple facts of arithmetic.4 Take an arbitrary sequence {x1, x2, · · · , xT } of
positive or zero integers which are smaller than a prescribed integer z ≥ 2. This finite sequence
admits an obvious identification with a period of a base-z numeral representation of an irreducible
fraction n/d = 0.ẋ1x2 · · · ẋT with 0 < n < d. As detailed in Sec. 2, procedures of division n/d

stipulate that every term of the sequence {xj/z| j = 1, 2, · · · } is approximated, to within a uniform
error bound 1/z, by the corresponding term in the sequence {rj/d| j = 1, 2, · · · } constructed on
remainders {rj | 0 < rj < d, j = 1, 2, · · · }. Since the integer sequence {x1, x2, · · · } is arbitrary, it may
be any sample of uniform and independent random number sequences of physical origin, with its
numbers multiplied by a large integer z and truncated to form the noted sequence of integers. Or, it
may well be a sequence of pseudo-random numbers generated by any numerical procedures on
computers.

The sequence of remainders

{r1 = n, r2, · · · } ≡ {n, nz, nz2, · · · } ≡ n{1, z, z2, · · · } ≡ n <z> mod(d),

is the n-coset of the cyclic subgroup <z>:≡ {1, z, z2, · · · } mod (d) generated by z in the reduced
residue class group Z∗

d , which is formed by integers coprime to the modulus d. Multiplicative
congruential generators thus rule all of uniform random number sequences, as they approximate
ably any members of the latter, if only the modulus d is allowed to be an arbitrary composite integer
formed by distinct primes. All new features of our analysis stem from this seemingly minute change
of the modulus d to be a general composite integer with the factorization

d = p1
i1p2

i2 · · · ps
is ,

where p1, p2, · · · , ps are distinct primes and i1, i2, · · · , is are their respective positive exponents. It
calls naturally for Chinese remainder theorem (or Sun Tsu’s theorem) that establishes the group
isomorphism ≈ between Z∗

d and the direct product group,

Z∗
d ≈ Z∗

p1
i1 × Z∗

p2
i2 × · · · × Z∗

ps
is .

The aim of the report is to answer the question: How should we design a good random number
generator on this perspective of generalized structures? Happy to say, mathematical notions for the
analysis, noted Chinese remainder theorem and direct product group structures, are all ripe for us
to use, and the analysis reveals that Chinese remainder theorem, besides nice conservation of group
structures, is even furnishing us with ingenious methods of shuffling, so to say, in the sense of
random number generation problems. We are further equipped with the established technological
weapon, the spectral test based on lattice structures inherent in multiplicative (and linear) congru-

3D. H. Lehmer: ”Mathematical methods in large scale computing units,” Annals Comp. Lab. Harvard Vol. 26 (1951)
pp. 141-146.

4H. Nakazawa: ”Coset representation of uniform and independent random number sequences I. Cosets associated with
periodic sequences,” http://www10.plala.or.jp/h-nkzw/ (August, 2004).
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ential random number sequences.5 The test enables us to select outstanding multipliers by specific
examinations of z, even in the present setting with generalizations. Last but not least, notions of
groups, in particular Lagrange’s theorem to denote only one, help us to select desirable structures
generically for the composite modulus d itself.

We shall have better prospects by summarizing conclusions and prescriptions for the generator
design beforehand, putting some details off to Sections 7 and 8. They run as (I)-(IV) below.

(I) Choose two odd, distinct primes p1, p2 satisfying requirements that

q1 := (p1 − 1)/2, q2 := (p2 − 1)/2

are coprime and different in their parity.
(II) For respective j = 1, 2 perform spectral tests on all primitive roots of Z∗

pj
examining l-tuples6 of

consecutive numbers in <zj> up to l = 6, and take several multipliers {zj , z
′
j , · · · } that show the

best performance.

(III) Use Chinese remainder theorem to determine the multiplier z for the modulus d = p1p2 by

z ≈ (z1, z2) mod (p1, p2),

which implies congruential equations z ≡ z1 mod (p1) and z ≡ z2 mod (p2).

(IV) Perform the second-stage spectral test7 on the cyclic sequence <z> and its coset sequence n<z>

in Z∗
p1p2

up to a selected degree l. Admit z if the result is passable to within the prescribed range
from the theoretical optimum. If not, discard z, and try different choices of z1 and z2 (and of primes
p1, p2 if necessary) until satisfactory combinations are found.

In principle, the number s of odd primes in (I) may be chosen for any s ≥ 3. However, there are
theoretical and practical reasons to regard the case s = 2 to be optimal. So we speak of s = 2 cases
exclusively. Taking results of Sec. 3 beforehand, we may say that <z> mod(d = p1p2) constructed
by z of (III) has the period T = LCM(p1 − 1, p2 − 1), which is the period of two-component vector
sequence whose components are taken by congruences in respective moduluses,

<z>≈<(z1, z2)>≡ {(1,1), (z1, z2), (z1
2, z2

2), · · · , (z1
j, z2

j), · · · } mod (p1, p2).

Thus, (I) and (II) ensure the largest period T = 2q1q2 for the cyclic sequence <z>, which will be seen
to have a decisive meaning for the uniform distribution of numbers in <z> and its coset n<z>.

In 1986 Fishman and Moore8 gave monumental 6-th degree spectral tests exhausting all primitive
roots for the prime modulus p = 231 − 1. The total number of primitive roots amounts to 24.89% of
this p. Fishman9 then gave in 1990 spectral tests for the modulus d up to 248. The number of relevant
multipliers for d = 248 amounts to 245, and their 2 × 10−3% = 1/(5 × 104) portion underwent 6-th

5D. E. Knuth: The Art of Computer Programming Vol. 2 Semi-numerical Algorithms, Third Ed. (Addison-Wesley 1998), Sec.
3.3.4.

6We call a spectral test as l-th degree, if it examines the distribution of 2 to l consecutive numbers in the cyclic sequence
<z> (and in coset sequences n<z> for composite moduluses, as we shall see) generated by z in Z∗

d .
7The spectral test used here for composite moduluses have meanings slightly different from the existing usage for, in

particular, d = 2r . See Sections 5 and 6.
8G. S. Fishman and L. R. Moore: ”An exhaustive analysis of multiplicative congruential random number generators

with modulus 231 − 1,” SIAM Journal on Scientific and Statistical Computing Vol. 7 (1986), pp. 24-45. After Fishman and
Moore we call the spectral test exhaustive if it examines all relevant multipliers, primitive roots for a prime modulus or
generators of a (sub)group for modulus d = 2i.

9G. S. Fishman: ”Multiplicative congruential random number generators with modulus 2β : An exhaustive analysis for
β = 32 and a partial analysis for β = 48,” Mathematics of Computation 54 (1990), pp. 331-344.
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degree spectral tests. Estimated from these data, we should have had a report of exhaustive tests for
the modulus d = 248 if the computer was faster by 5 × 104 times in 1990. We dearly remember that
CRAY-2 in 1989 had the performance of 2 giga flops = 2 × 109 flops, while a supercomputer of 1016

flops is said to be a real existence in few years. It might well be guessed that at present we are able
to extend herculean works10 of Fishman and Moore, and of Fishman, to exhaustive 6-th degree tests
for d � O(248).

Let us consider implications of recipes (I)-(IV) by the case of d = 248. Assume that primes p1 and
p2 of (I) are similar in magnitude and estimated as O(p). The period T � p1p2/2 � p2/2 = 248 will be
realized by p � 224.5. For primes p1, p2 � 224.5 exhaustive spectral tests of 6-th degree to select best
of multipliers zj ∈ Z∗

pj
(j = 1, 2) were certainly computable as early as 1986. Chinese remainder

theorem will be seen in Sec. 3 as realizing an ingenious way to shuffle and unite two processes
<z1>⊂ Z∗

p1
and <z2>⊂ Z∗

p2
into the cyclic sequence <z> or its coset sequence n<z> in Z∗

p1p2
.

Chances for two processes with good distribution to be shuffled into another good process will
naturally be higher than the magical realization of a good process out of two not-so-good ones.
Thus, we had better discard cases of little prospects, and concentrate on combinations of excellent
multipliers. Taking the composite modulus d = p1p2 � O(249), we obtain the convenience afforded
by (I)-(IV) to replace the problem with far smaller number of combinations of far easier exhaustive
6-th degree spectral tests. The change of tactics will also be seen to give us the freedom to choose the
geometry of points generated by consecutive numbers of <z>.

Suppose we are a little more ambitious, and aim to realize a longer period T = O(264) � p2/2. We
have, of course, real single precision random numbers from Mersenne Twister11 with its gigantic
period O(219937±32) and 623-dimensional equidistribution property over this whole period. Yet, the
process seems to defy all efforts to perform reliable tests on the distribution of numbers generated,
not only for the whole period but also for shorter practical portions of the length T = O(264), say. All
of 19937-th degree primitive polynomials12 over the finite field F 2 yield linear recurrence equations
that give the same period and the same equidistribution property to generated single precision real
number sequences. Since Mersenne Twister uses one of these primitive polynomials, some principle
or test for the choice will be necessary.13 But this test seems to pose an extremely difficult problem,
even for any portion of the sequence of length T = 264.

It seems more productive to convert the problem, and try to find good multiplicative congruential
generators of period T = 264 by spectral tests, as an approximant of all conceivable such random
number sequences with any distribution properties. In fact, exhaustive spectral tests of 6-th degree
for pj � O(232.5) is certainly possible for j = 1, 2. If we require in (IV) only l = 3 for the degree of the
second stage spectral test of z ∈ Z∗

p1p2
with d = p1p2 � O(265), the amount of computations needed

is estimated smaller than that of preceding two spectral tests of 6-th degree for p = O(232.5); see Sec.
8. We have now the possibility of a multiplicative congruential generator for d = p1p2 = O(265) and
the period T = 264, with its distribution properties ensured by the 3rd degree spectral test. Since we
have reasons to believe that exhaustive 6-th degree tests are possible for p = O(248) at present, we
might even think of multiplicative congruential generators with the period T � 295 = 1028.60 with

10S. K. Park and K. W. Miller: ”Good random number generators are hard to find,” Communications of the ACM Vol. 31
(1988),1192.

11M. Matsumoto and T. Nishimura: ”Mersenne Twister; A 623-dimensionally equidistributed uniform pseudorandom
number generator,” ACM Transactions on Modeling and Computer Simulation Vol. 4 (1994), 254-266.

12The total number of such primitive polynomials is given by Euler’s function as ϕ(219937 − 2)/19937.
13See Sec. 6 for the order of the probability to obtain a good primitive root out of generators of Z∗

p for p = 231−1, which is
the multiplicative group over the finite field � p. The problem to choose a primitive polynomial of 19937-th degree over the
finite field � 2 is the same as choosing a set of 19937 generators of the multiplicative group of the extension field � 219937 .
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3rd degree spectral tests as a realizable object.
The idea of spectral tests for composite moduluses is not new. The use of the modulus d = 2i with

spectral tests has been a popular choice including linear congruential generators.14 The way of our
use in Sec. 6, however, has different aspects from the existing usage which invariably assumes that
the lattice points are occupied (almost) fully by points generated by the cyclic sequence <z>. In
contrast, we are forced to use <z> and n <z> that occupy only a portion of the group to realize the
uniformity of generated numbers. Differences necessitates us to give arguments in as self-contained
a manner as possible, which will call for the patience of readers and efforts of the authors. All these
difficulties are rather gifts, however, and we shall have new, significant insights on the structure of
the problem. Thus, spectral tests will be recognized of their validity on geometrical grounds in far
broader circumstances, and the symmetry of point sets generated by consecutive numbers of <z>

and n <z> will be found even controllable with the aid of group structures conserved by Chinese
remainder theorem. In short, we shall recognize Chinese remainder theorem not only as an able
shuffler of component sequences, but also as the constructor that is standing at every stage of the
direct product formation and building a graded world of reduced residue class groups.

The report is constructed as follows. Section 2 recapitulates the fact that any sequence of integers
of finite length is approximated by a cyclic or coset sequence in a reduced residue class group. We
refer in Sec. 3 to the isomorphism between reduced residue class groups with composite moduluses
and direct product groups on the basis of Chinese remainder theorem. Section 4 pursues possible
devices that will ensure the uniform distribution to the generated sequences. Though a multitude of
complicated mechanisms may be conceived of, the best way for our skill will be to resort to cyclicity
of component groups, utilizing the specific convenience that arises with cases of composite modulus
d consisting of two primes. Section 5 on lattice structures is for the mathematical confirmation of the
applicability of spectral tests, in the mentioned generalized setting, as the measure of statistical
independence of sequential numbers. Efforts will be rewarded in Sec. 6 for spectral tests by some
generic comprehension of the geometry of points generated by <z>, which will clarify how the
prime moduluses constituting d should be chosen. The aimed design for uniform and independent
random number generators will be understood precisely in Sec. 7. In the final Sec. 8 we discuss the
aspects of computability of spectral tests and will have the above noted prescriptions with their full
details, together with short comments on other possible choices.

2. Finite sequences of integers and cyclic sequences in reduced residue class groups

Consider a finite sequence {x1, x2, · · · , xT } of positive integers or 0 with length T ≥ 1. Assume
for later convenience that the sequence is not a zero sequence {0, 0, · · · , 0}. Take an arbitrary integer
z ≥ 2 bounding the sequence as 0 ≤ xj < z, 1 ≤ j ≤ T . We concatenate the sequence indefinitely to
form a periodic sequence in base-z numerals that admits an interpretation as a rational number x,

x := 0.x1x2 · · · xT x1x2 · · · xT · · · = 0.ẋ1x2 · · · ẋT =
x1

z
+

x2

z2
+

x3

z3
+ · · · .

In order to make notions clear, we shall call a rational number x with a periodic base-z numeral
sequence as proper or in proper form if the following conditions (i)-(iii) are satisfied:

(i) The base-z (z ≥ 2) numeral sequence for x has the vanishing whole number part.

(ii) The sequence has a period T ≥ 1 that begins from the first numeral to the right of 0.

14There is even an indication of spectral tests with the modulus d = (231 − 1)(231 − 249); see pp. 106-107 of D. E. Knuth
in footnote,5 in particular Line 22 of Table 1. However, we would like to avoid the use of this modulus. See Sec. 7A.



6

(iii) The sequence includes at least one positive numeral in its period.

Thus, the sequence x, as introduced above by concatenation, has a proper form in base-z numerals.
It is well-known that this x has the following fractional expressions :15

x =
x1x2 · · · xT

zT − 1
=

n

d
, 0 < x ≤ 1, 0 < n ≤ d,

where and hereafter the fraction n/d is restricted to be irreducible. Note that d and z are coprime,
because d is a factor of zT − 1.16 Note also that the following sequence with z := z − 1,

x = 0.z z z · · · =
x1x2 · · · xT

zT − 1
=

(z − 1)(zT−1 + zT−2 + · · · + z + 1)

zT − 1
=

zT − 1

zT − 1
= 1 =

1

1
,

conforms to the definition of a proper sequence in base-z numerals with period T = 1. We thus
include x = n/d = 1/1 = 1 in our irreducible fraction, obeying the definition that n = 1 and d = 1 are
coprime by GCD(n, d) = 1.

Proper periodic sequences and the corresponding irreducible fractions may be characterized as
follows, as regards their mutual relation.

Corollary 1 (I) Let an integer z ≥ 2 and a base-z numeral sequence x (0 < x ≤ 1) be given in proper
form with period T ≥ 1. Then, there exist integers n, d fulfilling

GCD(n, d) = 1, 0 < n ≤ d, d|zT − 1, GCD(z, d) = 1,

and x has the representation x = n/d as an irreducible fraction with 0 < x = n/d ≤ 1.
(II) Let conversely positive integers n, d, z be given fulfilling

0 < n ≤ d, GCD(n, d) = 1, z ≥ 2, GCD(z, d) = 1.

The irreducible fraction x = n/d then has a unique expansion in base-z numeral sequence in proper
form. Its period T is any multiple of the order t = ord(z) of z in the reduced residue class group Z∗

d

modulo d, and is independent of the numerator n of the irreducible fraction.

(Proof) (I) The statement has been shown in the above.
(II) Consider the arithmetic process of division for n/d. Putting the case of x = 1 or n = d = 1 aside
for the moment, we assume 0 < n < d which means d ≥ 2. Denote r1 := n. The whole number part
of x = n/d is 0 by 0 < n < d. The first base-z numeral x1 is determined uniquely by the equation

zn = zr1 = dx1 + r2, 0 ≤ x1 ≤ z,

as the quotient of the division of zn = zr1 by d with the remainder r2. This remainder is written
compactly in terms of the congruence relation as

r2 ≡ nz mod (d), 0 < r2 < d.

In the next step we multiply the remainder r2 by z, and divide it with d to obtain uniquely the
quotient x2 satisfying 0 ≤ x2 ≤ z and the remainder 0 < r3 < d. The procedure is summarized as:

zr2 = dx2 + r3, 0 ≤ x2 ≤ z, r3 = zr2 − dx2 ≡ nz2 mod (d), 0 < r3 < d.

15In below the numerator x1x2 · · ·xT stands for x1z
T−1 + x2z

T−2 + · · · + xT−1z + xT .
16We might add: g = GCD(z, d) should then divide also zT − 1, implying g = 1 as g is a divisor of 1.
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Likewise, the sequence of quotients {x1, x2, · · · , xj , · · · } formed by zero or positive integers, and the
sequence of remainders {r1, r2, · · · , rj, · · · } consisting of positive integers, are constructed uniquely;
as remainders of the division of irreducible fraction n/d to the base z coprime with d, there never
arises 0 in {rj}. They satisfy:

zrj = dxj + rj+1, 0 ≤ xj ≤ z, rj ≡ nzj−1 mod (d), 0 < rj < d, j = 1, 2, 3, · · · . (1)

The whole setting may be abstracted as follows. Integers n, z are elements of the reduced residue
class group Z∗

d with modulus d and with the order17 �Z∗
d = ϕ(d), where ϕ(d) is Euler’s function. In

Z∗
d the base z has its own order t, with the property t|ϕ(d) (Lagrange’s theorem), zj for 1 ≤ j ≤ t are

all different, and zj becomes congruent to 1 for the first time at j = t. The sequence of remainders is
the coset sequence n<z> of the cyclic sequence <z> generated by z in Z∗

d ,

<z>:≡ {1, z1, z2, · · · , zj , · · · } ≡ {1, z1, z2, · · · , zt ≡ 1, z1, z2, · · · } mod (d),

n <z>:≡ {n, nz1, nz2, · · · , nzt ≡ n, nz1, nz2, · · · } mod (d).

These two sequences have the same period; note that nzj ≡ nzk mod (d) gives zj ≡ zk mod (d) upon
multiplication by n−1 ∈ Z∗

d , together with the obvious converse. So, the sequence {x1, x2, · · · } of
quotients that shares its period with remainders n<z> also has the period t = ord(z) independent
of n, with any other period T being a multiple of t. Thus, x = n/d has the unique, proper form in
base-z numeral sequence x = 0.x1x2 · · · ; the whole number part is 0 by n/d < 1, the period starts
from the first base-z numeral to the right of 0 because <z> or n<z> starts their period from the first
term, and the sequence of quotients includes at least one positive element by n > 0.

As regards the remaining case n = d = 1 or x = 1, the process of division in base-z numerals of
irreducible fraction 1/1 may be performed as follows. Define r1 := n = 1. Take artificially the whole
number part 0, multiply r1 = n = 1 by z, and divide zr1 = z by d = 1. Take the first quotient x1 = z

again artificially (but with no other choice in order to make the whole number part 0) to obtain the
remainder 1. Manifestly, the procedure may be repeated indefinitely. We obtain the same relation
(1), except for the change of 0 < rj < d to 0 < rj ≤ d, together with the unique proper form

1 = 0.x1x2x3 · · · = 0.z z z · · · , {r1, r2, r3, · · · } = {1, 1, 1, · · · },

of base-z sequence with period T = 1. Since all integers are congruent mutually modulo d = 1, we
take Z∗

1 = {1} in order to make group multiplications intuitive. This gives n ≡ z ≡ 1 mod (1), with
t = ord(z) = 1 and the sequence of remainders with period 1 independent of the choice of n,

{r1, r2, · · · } ≡ n <z>≡<1>≡ {1, 1, 1, · · · } mod (1),

as the sole cyclic sequence and its coset in Z∗
1 . This sequence of remainders conforms to the results

of cases with 0 < n < d.
We summarize this long, constructive proof of (II) adopted for the proof of Theorem 2 below. For

any integers n, d, z satisfying GCD(n, d) = 1, 0 < n ≤ d, GCD(z, d) = 1, z ≥ 2, the irreducible
fraction n/d is expressed in unique, base-z numeral sequence in proper form, with {x1, x2, x3, · · · }
for quotients and the associated sequence of remainders {r1, r2, · · · } ≡ n{1, z1, z2, · · · } mod (d)
satisfying the relations extending (1):

zrj = dxj + rj+1, 0 ≤ xj ≤ z, rj ≡ nzj−1 (mod d), 0 < rj ≤ d, j = 1, 2, 3, · · · . (2)

We have also proved that the period of x in its base-z proper form is given by an arbitrary multiple
of t = ord(z). �

17The symbol �S expresses, as usual, the number of elements of the set S.
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The above result (2), as well as the common sense that if the remainder is large then the next
quotient will be large, are all well-known. Yet, we obtain a significant estimate by dividing the
above with zd,

rj

d
=

xj

z
+ εj , 0 <

rj

d
− xj

z
= εj =

rj+1

zd
≤
(

1
z

)
. (3)

Consider the case that the sequence {xj| j = 1, 2, · · · } is used for the uniformly distributed random
number. Assuming that {x1, x2, · · · } are not all 0. Then 0 ≤ xj/z < 1 is the appropriate candidate for
the real random variable in the interval [0, 1). Therefore we have18 by Corollary 1:

Theorem 2 Let there be given integers T ≥ 1 and z ≥ 2, as well as a sequence {x1, x2, · · · , xT } of
positive or 0 integers in the range 0 ≤ xj < z for 1 ≤ j ≤ T . Assume that {x1, x2, · · · , xT } are not all
0. Let x ∈ [0, 1) be the rational number represented by the base-z numeral sequence x = 0.ẋ1x2 · · · ẋT

in proper form, and denote its irreducible fraction representation as x = n/d. There hold

0 < n ≤ d, GCD(n, d) = 1, d|zT − 1, GCD(z, d) = 1.

Correspondingly, the sequence {uj := xj/z| j = 1, 2, · · · } in [0, 1) is approximated by the sequence
{vj := rj/d| 0 < rj ≤ d, j = 1, 2, · · · } in (0, 1] uniformly within the error 1/z as

0 < vj − uj ≤ 1/z, j = 1, 2, · · · .

Here, {rj} is the sequence of remainders in the division process of x = n/d, and is identical with the
coset sequence n<z>≡ {n, nz1, nz2, · · · } mod (d) taken in the interval (0, d], of the cyclic sequence
<z> generated by z in the reduced residue class group Z∗

d . Conversely, the sequence of quotients
{x1, x2. · · · } is re-constructed as

xj = (zrj − rj+1)/d, j = 1, 2, · · · ,

if the cyclic sequence <z> is known. (End of Theorem 2)

With a large odd prime modulus d = p or with d = 2i for i >> 4, the sequence of remainders

{rj | 0 < rj < d, j = 1, 2, · · · } ≡ n <z> mod(d)

has been used as the multiplicative congruential generator for uniform and independent random
numbers in the form {rj/d| j = 1, 2, · · · }. The use has been experienced vast applications, and the
method to choose good multiplier z is well-established as spectral tests. Theorem 2 casts a new light
on this setting, as discussed in Sec. 1.

We started with a base-z numeral sequence of length T given, and found Theorem 2 for large z.
The case of z = 2, which is realized typically in coin tosses, is a significant problem with the smallest
z, and inferences of Theorem 2 lose their power. However, practical applications as uniform and
independent random numbers take 32 or 64 base-2 consecutive numerals for single or double
precision real variables. The circumstance allows the reformulation of the problem to cases with
z = 232 or z = 264 together with the corresponding modulus d|zT − 1, and Theorem 2 would then
work well. In general, if the problem starts with numerals for a small base z, we may take some
large s of such numerals as a unit, and consider the sequence {yj | j = 1, 2, · · · } defined by

yj := xsjxsj+1 · · · xsj+s−1 = xsjz
j−1 + xsj+1z

j−2 + · · · + xsj+(s−2)z
s−(s−1) + xsj+(s−1).

18See H. Nakazawa, in footnote.4
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This reformulates the problem to the one with the multiplier zs >> 1, and Theorem 2 recovers its
power. If the length T of the original sequence is fixed but has the factorization T = ts with large s,
the same transformations z → zs with T → t may be applied. Observations remind us of singular
natures of the case with prime T , which will have occasions to be touched on later; at this place we
note that, if the given value of T is not convenient, we may add arbitrary numbers, say 0’s, to the
end of the sequence at our will, transform z → zs, and discard the added tail in the result. A prime
length T is not a truly impeding factor for the validity of Theorem 2.

3. Composite moduluses: Chinese remainder theorem and direct product decomposition

We turn to multiplicative, congruential generators and the corresponding reduced residue class
groups with composite moduluses. The key is Chinese remainder theorem that leads us to the
notion of product groups. We start from a preparatory corollary for this far-reaching theorem.

Corollary 3 Let m := LCM(d1, d2, · · · , dl) be the least common multiple of d1, d2, · · · , dl which are
positive integers. A necessary and sufficient condition for the congruence a ≡ b mod (m) of any pair
of integers a, b is that a ≡ b mod (dj) holds for every j in 1 ≤ j ≤ l.

(Proof) If a ≡ b mod (dj) holds for all j satisfying 1 ≤ j ≤ l, a − b is surely a common multiple of
d1, d2, · · · , dl. Thus a − b is divisible by the least common multiple m, implying a ≡ b mod (m).
Conversely, a ≡ b mod (m) implies that m divides a − b, so that all of dj divide a − b, implying that
a ≡ b mod (dj) holds for any j in 1 ≤ j ≤ l. �

Chinese remainder theorem 4 Let the modulus d ≥ 2 be factorized into pairwise coprime
integers as

d = d1d2 · · · dl (dj ≥ 2, 1 ≤ j ≤ l), l ≥ 2.

Let {aj | 1 ≤ j ≤ l} be arbitrary integers given. Then, there exists an integer a satisfying

a ≡ a1 (mod d1), a ≡ a2 (mod d2), · · · , a ≡ al (mod dl), (4)

and a is unique modulo d. The form of a may be expressed as19

a ≡ a1U1 + a2U2 + · · · + alUl (mod d), Uj ≡ δjk (mod dk), (1 ≤ j, k ≤ l), (5)

where U1, U2, · · · , Ul are determined by d1, d2, · · · , dl, and not dependent on a1, a2, · · · , al.

(Proof) First, the uniqueness. Assume that a and a′ fulfill (4). Since d1, d2, · · · , dl are all pairwise
coprime, d is their least common multiple. Therefore, (4) and Corollary 3 assure a ≡ a′ mod (d), the
uniqueness modulo d. Next, the existence of a satisfying (4). We start by constructing U1, U2, · · · , Ul

that fulfill the second half of (5). After Allenby and Redfern,20 we put ej := d/dj . Since d1, d2, · · · , dl

are pairwise coprime, so are dj and ej . This ensures GCD(dj , ej) = 1 for all 1 ≤ j ≤ l. Thus, by
Euclidean algorithm there exist integers Dj , Ej that give 1 = djDj + ejEj for every j in 1 ≤ j ≤ l.
Note also that {ej ,Dj , Ej} are determined by {dk| 1 ≤ k ≤ l} and do not depend on {ak| 1 ≤ k ≤ l}.
Put Uj := ejEj , and we have 1 = djDj + Uj . This equation taken modulo dj gives 1 ≡ Uj mod (dj).
Since Uj = ejEj contains all dk with k 	= j, Uj ≡ 0 mod (dk) holds for any k 	= j. These prove the
existence of {Uj} fulfilling the second half of (5). Defining a by its first half, we have

a = a1U1 + a2U2 + · · · + alUl ≡
∑

k akδkj = aj mod (dj), 1 ≤ j ≤ l. �
19In below δjk is Kronecker’s delta.
20R. B. J. T. Allenby and E. J. Redfern: Introduction to Number Theory with Computing (Arnold 1989) p. 105. See also D. E.

Knuth in footnote5, p.270 for another suggestive expression Uj = (d/dj)
ϕ(dj ).
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Let there be given arbitrary groups G,G′. Denote their elements as {a, b, · · · } and {a′, b′, · · · },
respectively. The pairs, (a, a′), (b, b′), · · · , which are elements of the product set G × G′, may be
defined of their product by

(a, a′)(b, b′) := (aa′, bb′).

This definition makes the product set G × G′ a group, called the direct product group of G and G′.
In fact, the following relations are readily seen to prove this statement:

(I) The unit element of G × G′ is (e, e′), in the obvious notation.

(II) (a, a′) ∈ G × G′ has the inverse (a−1, (a′)−1).

(III) If G,G′ are finite groups, then �(G × G′) = (�G)(�G′).

The notion may be extended to the direct product of three or more groups. We discard generality,
and summarize the relevant fact with reduced residue class groups. We shall denote ≈ for the group
isomorphism.

Theorem 5 (I) Let d = d1d2 · · · dl be a factorization of d into pairwise coprime integers. An arbitrary
element z ∈ Z∗

d belongs to Z∗
dj

for any j in the range 1 ≤ j ≤ l. Let f denote the mapping of z in Z∗
d

to the element (z, z, · · · , z) in the direct product group Z∗
d1

× Z∗
d2

× · · · × Z∗
dl

f(z) := (z, z, · · · , z) ∈ Z∗
d1

× Z∗
d2

× · · · × Z∗
dl

.

Taken in the congruence of respective moduluses, f is a bijection forming group isomorphism:

Z∗
d ≈ Z∗

d1
× Z∗

d2
× · · · × Z∗

dl
, �Z∗

d = (�Z∗
d1

)(�Z∗
d2

) · · · (�Z∗
dl

).

(II) For the prime factorization d = p1
i1p2

i2 · · · pl
il this isomorphism takes the form:

Z∗
d ≈ Z∗

p1
i1 × Z∗

p2
i2 × · · · × Z∗

pl
il
, �Z∗

d =
l∏

j=1

(�Z∗
pj

ij
).

(Proof) (I) Any z ∈ Z∗
d is coprime to d = d1d2 · · · dl, so that z is coprime to dj and z ∈ Z∗

dj
holds for

all j in 1 ≤ j ≤ l. Thus, f is a mapping from Z∗
d into the direct product group on the right hand side.

Conversely, any element (z1, z2, · · · , zl) ∈ Z∗
d1

× Z∗
d2

× · · · × Z∗
dl

determines, by Chinese remainder
theorem 4 applicable by the assumption that d1, d2, · · · , dl are pairwise coprime, an integer z that is
unique modulo d with z ≡ zj mod (dj) for all j in 1 ≤ j ≤ l. This integer z is coprime to dj for any j

in 1 ≤ j ≤ l; note that z ≡ zj mod (dj) gives GCD(z, dj) = GCD(zj , dj) = 1. Hence z is in Z∗
d1d2···dl

with

f(z) = (z, z, · · · , z) ≡ (z1, z2, · · · , zl) mod (d1, d2, · · · , dl).

Thus, f is a bijection between Z∗
d and Z∗

d1
× Z∗

d2
× · · · × Z∗

dl
. Since any elements z, z′ in Z∗

d give

f(zz′) := (zz′, zz′, · · · , zz′) = (z, z, · · · , z)(z′, z′, · · · , z′) = f(z)f(z′),

f is a group isomorphism. Counting the number of elements on both sides of the isomorphism
z ≈ (z1, z2, · · · , zl), we obtain the equation for orders.
(II) This is the main theorem of the direct product decomposition of reduced residue class groups
with composite moduluses, which is now obvious as a specific case of (I). �

Admitting some redundancy of statements, we also note the following for later convenience.
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Corollary 6 Let d = d1d2 · · · dl be a factorization of d into pairwise coprime integers. Elements z, n

in Z∗
d are determined uniquely by their corresponding elements in component groups,

z ≡ z1 mod (d1), z ≡ z2 mod (d2), · · · , z ≡ zl mod (dl),

n ≡ n1 mod (d1), n ≡ n2 mod (d2), · · · , n ≡ nl mod (dl),

or by the isomorphism,

z ≈ (z1, z2, · · · , zl) mod (d1, d2, · · · , dl), n ≈ (n1, n2, · · · , nl) mod (d1, d2, · · · , dl).

Elements in the cyclic sequence <z> or in the coset sequence n<z> for indices s = 0, 1, 2, · · · have
following expressions:

zs ≡ z1
sU1 + z2

sU2 + · · · + zl
sUl mod (d),

nzs ≡ n1z1
sU1 + n2z2

sU2 + · · · + nlzl
sUl mod (d),

Uj ≡ δjk mod (dk) (j, k = 1, 2, · · · ).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6)

Here, integers U1, U2, · · · , Ul are determined by d1, d2, · · · , dl, and do not depend on z1, z2, · · · , zl,
n1, n2, · · · , nl or s.

(Proof) We need only to discuss (6). Since n = 1 gives nzs = zs, we take nzs exclusively in the
proof. Resorting to Theorem 5 (I) we have the isomorphism

nzs ≈ (n1, n2, · · · , nl)(z1, z2, · · · , zl)s = (n1z1
s, n2z2

s, · · · , nlzl
s).

Thus, Chinese remainder theorem 4 proves all of (6). It is also suggestive to consider expressions

z ≡ z1U1 + z2U2 + · · · + zlUl mod (d), n ≡ n1U1 + n2U2 + · · · + nlUl mod (d),

as well as the relation

UjUk ≡ Ujδjk mod (di), 1 ≤ ∀i ≤ l

obtained from (5) which gives UjUk ≡ Ujδjk mod (d) by Corollary 3. A few steps of calculation of
products will readily convince us of (6). �

The relations in (6) afforded by Chinese remainder theorem 4 reveal how the cyclic sequence <z>

and the coset sequence n<z> in Z∗
d are constructed by the corresponding sequences in component

groups. In words of random number generation problems, composite moduluses realize ways of
shuffling of <z1>, <z2>, · · · as well as of n1 <z1>, n2 <z2>, · · · . Any natural random number
sequences are exploiting this mechanism tacitly. The linear disguise of (5) and (6), however, should
be taken with care. Thus, small changes of a1, a2, · · · , al on the right hand side of (5) can give linear
changes in a. However, nonlinear jumps of a may occur as the right hand side crosses integral
multiples of d. It might be of some help to consider that the right hand sides of (5) and (6) represent
some (nonlinear) sawtooth type function.

In passing we note a fact on the order of elements in direct product groups.

Corollary 7 Let d = d1d2 · · · dl be the factorization into relatively prime integers. Take an arbitrary
integer z ∈ Z∗

d characterized by

z ≈ (z1, z2, · · · , zl) mod (d1, d2, · · · , dl).

The order t of z, the smallest positive t that gives zt ≡ 1 mod (d), is given by

t := ord(z) = LCM(t1, t2, · · · , tl),



12

where tj is the order of zj in Z∗
dj

(1 ≤ j ≤ l). The periods of the cyclic sequence <z> and of a coset
sequence for any n ∈ Z∗

d are all the same as t.

(Proof) Since d = d1d2 · · · dl = LCM(d1, d2, · · · , dl) holds by assumption, Corollary 3 ensures that
ord(z) is the smallest positive of t satisfying:

zj
t ≡ 1 mod (dj), 1 ≤ j ≤ l.

Thus t = ord(z) = LCM(t1, t2, · · · , tl) holds true. Since <z> is the special case n = 1 of n<z>, we
consider only the period of n<z>. This is the smallest positive of t′ that gives nzj+t′ ≡ nzj mod (d)
for any j = 0, 1, 2, · · · . Multiplication by n−1(zj)−1 ∈ Z∗

d gives zt′ ≡ 1 mod (d). Thus, a period t′ is
any multiple of the order t of z, implying <z> and n<z> have the period t. �

4. Uniform distribution on composite modulus reduced residue class groups

If an element z in a group G generates a cyclic sequence <z> that exhausts all elements of G, then
G is qualified as cyclic, or a cyclic group, and z is called a generator of the group. So far, random
number generators of multiplicative congruential type have taken, in essence, generators of cyclic
reduced residue class groups as their multipliers and ascertained the uniformity of their output; see
Theorem 8 below. We propose a different strategy, which comprises to take reduced residue class
groups with composite moduluses formed by two distinct primes. Such groups cannot be cyclic.
But there can be found a narrow path to the same uniformity as in the conventional generators. The
use of such moduluses will be rewarded by longer periods and higher precision and, notably, with
the freedom to control the geometry of points formed by the sequence of generated numbers.

In order to proceed we need to discern cases of cyclicity. The Existence or absence of cyclicity of a
reduced residue class group Z∗

d is seen with the direct product decomposition corresponding to the
factorization of the modulus d into prime powers. The following is known for cases of moduluses
formed by a power of a single prime:

Theorem 8 Reduced residue class groups with powers of a prime for its modulus, d = pi, are
classified as follows.
(I) With any power d = pi (i ≥ 1) of an odd prime p > 2 for the modulus, Z∗

pi is cyclic. Its order,
the number �Z∗

pi of group elements, is given by Euler’s function as ϕ(d) = ϕ(pi) = pi − pi−1, an even
number, which is also enumerated directly from the list of its elements:

Z∗
pi = {1, 2, · · · , p − 1, p + 1, p + 2, · · · , 2p − 1, 2p + 1, · · · , pi − 1.}

A generator z of a single prime modulus group Z∗
p is called a primitive root modulo p.21

(II) For d = 2i (i ≥ 4), Z∗
2i is not cyclic.22 However, its subgroup H1,5 with the order �H1,5 = 2i−2,

H1,5 := A
(2i)
1 ∪ A

(2i)
3 , A

(2i)
k := {8j + k| j = 0, 1, 2, · · · , 2i−3 − 1}, k = 1, 3, 5, 7,

21Generators of Z∗
pi for i ≥ 2 are also called primitive roots at times. A simple fact is that a generator for d = pi (i ≥ 2)

is necessarily a primitive root for d = p. Note a, z ∈ Z∗
p implies a, z ∈ Z∗

pi and vice versa. Note also the following: If
a, z ∈ Z∗

p fulfill a �≡ zj mod (p) for any integers j = 0, 1, 2, · · · (with zp−1 ≡ 1 mod (p) by Fermat’s little theorem), or if
a − zj is not divisible by p for any j = 0, 1, 2, · · · , then a − zj is never divisible by pi for any j. Thus if z is not a primitive
root of Z∗

p , z cannot be a generator of Z∗
pi .

22Cases of d = 2 = 21, 4 = 22 give cyclic Z∗
d , but they are not practicable. For d = 8 = 23 it is easy to confirm

Z∗
8 = {1, 3, 5, 7}, 12 = 1, 32 ≡ 1, 52 ≡ 1, 72 ≡ 1 mod (8),

showing the absence of cyclic sequences that reproduce the whole group. This lack of cyclicity is inherited by Z∗
2i for all

i ≥ 4.
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is cyclic, and its generators are all integers in A
(2i)
5 . (End of Theorem 8)

The reader is referred to Allenby and Redfern for the proof.23

The sequential distribution of numbers in <z> is understood readily by visual information. We
show below figures on which consecutive 2-tuples of numbers are plotted as points; the left shows
points from the sequence of quotients {q1, q2, · · · }, and the right is for the sequence of remainders
{r1, r2, · · · }, both for the irreducible fraction 1/d. In more precise terms they represent points

Pj := (qj/z, qj+1/z), and Qj := (rj/d, rj+1/d)

on the left and the right, respectively, for j = 1, 2, · · · , t, where t is the order (or the period) of <z>.
The outer frame shows the range −0.05 ≤ x, y ≤ 1.05.

Suppose that we take a point x on the horizontal axis of these figures, and draw a vertical band of
width 1/

√
ϕ(d), say. If the band contains nearly

√
ϕ(d) points irrespective of the position x, we may

say that we have a uniform distribution in one period of the sequence. With this simple criterion in
mind, we are suggested by these figures that uniform distributions will be realized most feasibly by

Fig. 1: Prime modulus d = p = 251, Z∗
d cyclic; z = 34 is a primitive root.

Fig. 2: Prime modulus d = 251, Z∗
d cyclic; z = 47 is not a primitive root.

23See pp. 125-135 of R. J. B. T. Allenby and E. J. Redfern in footnote.18
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Fig. 3: Composite modulus d = 304, Z∗
d non-cyclic; z = 13.

Fig. 4: Modulus d = 312, Z∗
d cyclic, generator z = 34, with 311 − 310 = 30 vacancies.

Fig. 5: Modulus d = 210, z = 35 ≡ 3 (mod 8).
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Fig. 6: Modulus d = 210, z = 45 ≡ 5 (mod 8).

choosing Z∗
d and z to be a cyclic group and its generator, respectively. The choice has in fact been the

setting for multiplicative congruential generators of random numbers. In more detail, odd primes
for moduluses d = p and corresponding primitive roots for z have been a leading configuration
suggested by Theorem 8 (I). This choice makes <z> itinerate every element of Z∗

p = {1, 2, · · · , p − 1}
once in the period t = ϕ(p) = p − 1. Though Z∗

p lacks 0 and <z> leaves it unoccupied in the interval
[0, p), the fault is admitted as negligible for large p. The other leading choice has been d = 2i (i ≥ 4)
and z ≡ 5 mod (8) recommended by Theorem 8 (II). In this case <z> with the period 2i−2 itinerates
all elements of the subgroup H1,5, which has the neat, equidistant distribution of its elements shown
in Fig. 6.24

In contrast, cases of powers of an odd prime p, Z∗
pi for i ≥ 2, seems to have been unpopular, and

the present authors do not know their application. The group Z∗
pi is devoid of multiples of p in the

interval (0, pi), which form the set V of numbers,

V := {p, 2p, · · · , (pi−1 − 1)p}, �V = pi−1 − 1.

These give a regular array of vacancies in the plot of 2-tuples from the sequence <z> in the right of
Fig. 4. Its left figure of {q1, q2, · · · } of quotients is complicated by errors of O(1/z) = O(1/

√
d), but a

view of the figure slanted will reveal the persistence of vacancies. Since we shall have a better
prospect of the setting after observations of more general composite moduluses of our concern, we
postpone the discussion of d = pi (i ≥ 2) cases to Sec. 8.

We now pass from visual information to considerations on the structure of composite modulus
groups. For simplicity of arguments we leave generality, and start with the specific case of our
interest. Take two distinct odd primes p1, p2, and form d = p1p2 as the modulus. The orders of
relevant groups are:

�Z∗
p1

= p1 − 1, �Z∗
p2

= p2 − 1, �Z∗
p1p2

= (p1 − 1)(p2 − 1).
24As a preparation for Sec. 7 we note here a singularity of the prime 2 among primes, as frequently stated. Assume

d = 2i, i ≥ 4. Integers that are coprime with 2i are the totality of odd integers. Thus Z∗
2r is the set of odd integers

modulo 2r . They are classified into 1, 3, 5, 7 modulo 8, as noted already. Though Theorem 8 (II) lacks descriptions, the

integers in H1,3 := A
(2i)
1 ∪ A

(2i)
3 , �H1,3 = 2i−2, also form a cyclic subgroup with generators in A

(2i)
3 . We may further

add A
(2i)
1 alone is cyclic, but with the order �A

(2i)
1 = 2i−3 smaller than that of H1,5. The problem with H1,3 is well-known;

any integer z ≡ 3 mod (8) has its powers with non-equidistant motion 3, 1, 3, 1, 3, 1, · · · in their least significant 3 bits.
Compare Figures 5 and 6. This subgroup H1,3, though cyclic, should be regarded inadequate for uniform distribution.
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It is important to see the elements of Z∗
p1p2

, which are integers in the interval [1, 2, · · · , p1p2 − 1]
excluding multiples of p1 and p2. Namely, p1 + p2 − 2 integers

p1, 2p1, · · · , (p2 − 1)p1; p2, 2p2, · · · , (p1 − 1)p2

are absent in Z∗
p1p2

. This fact gives another proof of the relation

ϕ(p1p2) = p1p2(1 − 1/p1)(1 − 1/p2) = (p1 − 1)(p2 − 1) = (p1p2 − 1) − (p1 + p2 − 2).

Let primitive roots modulo p1 and modulo p2 be z1 and z2, respectively. Apply Chinese remainder
theorem 4 to obtain z ∈ Z∗

p1p2
fulfilling

z ≡ (z1, z2) mod (p1, p2), z ≡ z1U1 + z2U2 mod (p1p2).

The order t of z is given by

t := ord(z) = LCM(ord(z1), ord(z2)) = 2LCM(q1, q2), q1 := (p1 − 1)/2, q2 := (p2 − 1)/2.

We take hereafter that q1 and q2 are coprime. This gives the largest order t = 2q1q1, but t is then only
the half of �Z∗

p1p2
= 4q1q2. Thus, Z∗

p1p2
is not cyclic, and Lagrange’s theorem dictates that the cyclic

sequence <z> and its coset n<z>, n 	∈<z>, divide the group Z∗
p1p2

precisely into two parts.
This is the setting that we are going to exploit. We shall take <z> or n<z> for the candidate of

integers distributed uniformly in the range (0, p1p2). Note that our experiences on multiplicative
congruential generators suggest that, even if a cyclic sequence <z> generates all elements of the
group as in Figures 1 and 6, the use of the whole sequence <z> is inadequate. This is because the
last half of the sequence just puts numbers into vacancies left by the first half, which should be
taken as a strong correlation between two halves. Thus, the use in the present case of either one of
<z> or its coset n<z> is the same as the use of half of <z> in the case of cyclic z. The fact that the
construction (6) for zj = z1

jU1 + z2
jU2 or nzj = n1z1

jU1 + n2z2
jU2 gives shuffling of two, uniformly

distributed sequences lends further support to this viewpoint on the behavior of the sequence <z>

in smaller scales of O(p1) or O(p2).
Thoughts may be extended to cases with s distinct odd primes p1, p2, · · · , ps forming a modulus

d = p1p2 · · · ps. Assume that

qi := (pi − 1)/2, i = 1, 2, · · · , s, q1, q2, · · · , qs are mutually coprime,

are fulfilled as before. Take primitive roots zi modulo pi for respective i = 1, 2, · · · , s, and determine
z ∈ Z∗

p1p2···ps
by z ≡ zi mod (pi) for i = 1, 2, · · · , s with the help of Chinese remainder theorem 4. The

multiplier z then has the order

2LCM(q1, q2, · · · , qs) = 2q1q2 · · · qs.

Thus, <z> occupies 1/2s−1 (s ≥ 2) of the group elements that total to �Z∗
p1p2···ps

= 2sq1q2 · · · qs. For s

larger, this portion of the cyclic subgroup <z> or its cosets n<z> is smaller. Ambiguities will grow
regarding the validity of the spectral test for sequential independence, as well as difficulties to have
spectral tests for the enhanced period of O(2q1q2 · · · qs). We see here reasons to take the case s = 2 as
optimal.

The remaining possibility of the factor 2i in the modulus d will later be found to have a decisive
reason that it should be avoided.

The merit of the modulus consisting of two distinct odd primes will now be manifest. The choice
realizes the same type of uniformity as the existing multiplicative congruential methods, enhances
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the period nearly to the square and nearly doubles the precision of emitted numbers. We see below
that they may be tested spectrally. Last but not least, the progress of computers reinforces, but never
diminishes, these merits of the specified way of design as random number generators.

5. Vector space and its points generated by cyclic sequences: Lattice structures

We turn to the independence of distribution of consecutive integers in sequences. Take a reduced
residue class group Z∗

d with generally composite modulus d. We start here with fixing the notion,
and discuss the fact that, irrespective of whether z ∈ Z∗

d is a generator of Z∗
d or not, z generates a

cyclic sequence <z> or its coset sequence n<z> whose consecutive l-tuples give points in a lattice
determined by d, z. The fact that approximating cyclic sequences necessarily have lattice structures
is our luck by which we are afforded chances and tools to translate the independence of distribution
into a geometrical comprehension that may be estimated quantitatively by spectral tests.25

Let us consider for the moment without congruence relation modulo d. We identify points in El

with their coordinates, and introduce specific notations below for a set of points:

{Pj := (zj , zj+1, zj+2, · · · , zj+l−1) = zj(1, z1, z2, · · · , zl−1) =: zjP0| j = 1, 2, · · · }.
A lattice is defined as follows for our later convenience:

Definition 9 Let {e1,e2, · · · ,el} be a set of linearly independent26 vectors27 in l dimensional
Euclidean space El. The set of their linear combinations with arbitrary integer coefficients is defined
to be a lattice in El spanned by the bases (or basis vectors) {e1,e2, · · · ,el}, with the notation

((e1,e2, · · · ,el)) := {c1e1 + c2e2 + · · · + clel| c1, c2, · · · , cl ∈ Z},

where Z is the set of integers as usual. (End of Definition 9)

In the sense of solid state physics Definition 9 gives simple lattices. We deal exclusively with
simple lattices. Points in the right of Figures 4,5 (and, in fact, those of Figures 2, 3, 6) are occupying a
portion of simple lattices, as will be clarified below in Therem 11. The linear independence of vectors
is well-known to be equivalent for the determinant formed by them to be non-zero, or for the hyper
cube spanned by them to have non-vanishing volume. The same condition may be stated that their
linear combination with real coefficients can be a zero vector if and only if coefficients are all zero.
The lattice ((e1,e2, · · · ,el)) as a set of vectors is closed by multiplication of elements by integers and
by additions of constituent vectors.

Given a point P in El, we often need to consider the set of all points with coordinates congruent to
those of P modulo d. This is accomplished feasibly in terms of lattices.

Corollary 10 Introduce vectors that represent d-translation parallel to respective axes in El by

e
(d)
1 := τ(d, 0, 0, · · · , 0, 0), e

(d)
2 := τ(0, d, 0, · · · , 0, 0), · · · , e

(d)
l := τ(0, 0, 0, · · · , 0, d).

25We ask the reader to abandon the rootless feeling that lattice structure is contradicting randomness. Any sequence of
integers with large upper bound z is approximated by the corresponding numbers in n<z>⊂ Z∗

d by Theorem 2, and the
consecutive l-tuple of numbers of n <z> forms a point belonging to a lattice in the l-dimensional space El. If we find
difficulties in the recognition of lattice structures in plots of realistic integer sequences with large base z, say that of π in
numerals of base z = 103, it is because the points occupy only a very small portion of lattice points, and our vision fails
to grasp the underling lattice structures with too many vacancies. Or, if we had accustomed to use large base numerals in
our arithmetic, say z = 103, and to plot the results in [0, 1], we might have experienced lattice structures as common sense
in any division processes for n/d.

26We define linear independence with real coefficients.
27All vectors are defined here to be column vectors. By reasons of the space on the paper they will be denoted typically

as τ� = (a1, a2, · · · , al) or � = τ(a1, a2, · · · , al) by their transposed forms.
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(I) Let a point P in El is given, together with a point Q chosen arbitrarily for the basis point. Denote
X ≡ P mod (d) if the point X has coordinates congruent to those of P modulo d. The set of position
vectors

−→
QX with components congruent to those of

−→
QP modulo d is expressed as follows:28

{−→QX| X ≡ P mod (d)} = −→QP + ((e(d)
1 ,e

(d)
2 , · · · ,e

(d)
l )).

(II) The set of points in El congruent to points in {P1, P2, · · · , Pk} modulo d may be denoted as:

{−→QX| X is congruent to one of P1, P2, · · · , Pk modulo d}
= {−−→QP1,

−−→QP2, · · · ,
−−→QPk} + ((e(d)

1 ,e
(d)
2 , · · · ,e

(d)
l )).

(Proof) (I) Let the points P, X be P = (π1, π2, · · · , πl), X = (ξ1, ξ2, · · · , ξl) in coordinates. The
relation X ≡ P mod (d) is equivalent to the existence of a set of integers c1, c2, · · · , cl that give, for
any point Q,

−→
QX =

−→
QP + −→PX =

−→
QP + τ(ξ1 − π1, ξ2 − π2, · · · , ξl − πl) =

−→
QP + c1e

(d)
1 + c2e

(d)
2 + · · · + cle

(d)
l .

Forming sets of all possibilities on left hand side, we have

{−→QX| X ≡ P mod (d)} ⊂ −→QP + ((e(d)
1 ,e

(d)
2 , · · · ,e

(d)
l )).

Taking the all possibilities of the right hand side, we have the converse inclusion relation, and the
conclusion of (I) holds true.
(II) It is obvious that the sum of sets obtained in (I) is the answer, as given. �

We have now the lattice that nests points formed by consecutive numbers of the cyclic sequence
<z> and the coset sequence n<z> of Z∗

d .

Theorem 11 Let the modulus d ≥ 1 may be composite, z, n be any elements of Z∗
d , and l ≥ 1 be

any integer. Denote

Pj := (nzj , nzj+1, nzj+2, · · · , nzj+l−1) = nzj(1, z1,2 , · · · , zl−1), j = 0, 1, 2, · · ·

for points formed by l consecutive numbers of the coset sequence n<z>, or by those of the cyclic
sequence <z> in the case n = 1. The sequence of position vectors {−−→OPj| j = 0, 1, 2, · · · } in El,
together with all position vectors of points that are congruent to {Pj| j = 0, 1, 2, · · · } modulo d, are
in the lattice G1 := ((e′

1)) for l = 1 and in Gl := ((e′
1,e

(d)
2 , · · · ,e

(d)
l )) for l ≥ 2 with29

e′
1 = τ(1, z, z2, · · · , zl−2, zl−1), e

(d)
2 = τ(0, d, 0, · · · , 0, 0), · · · , e

(d)
l = τ(0, 0, 0, · · · , 0, d). (7)

In the l-dimensional hypercube Cl formed by intervals [0, d) on respective coordinate axes, the
lattice Gl has exactly d lattice points.

(Proof) In the case l ≥ 2, the basis vectors e
(d)
2 ,e

(d)
3 , · · · ,e

(d)
l realize d-shift of coordinates along

the second, the third, · · · , and the l-th axes upon addition to any position vectors. The d-shift along
the first axis is realized by the vector e

(d)
1 in Gl,

e
(d)
1 := de′

1 (l = 1); e
(d)
1 := de′

1 − ze
(d)
2 − z2e

(d)
3 − · · · − zl−1e

(d)
l (l ≥ 2). (8)

Therefore, including the case l = 1, any element of the lattice ((e(d)
1 ,e

(d)
2 , · · · ,e

(d)
l )) belongs to the

lattice ((e′
1,e

(d)
2 , · · · ,e

(d)
l )), and the following inclusion relation holds true:

28For sets A,B of vectors we denote A + B := {�+ �| � ∈ A, � ∈ B}. Then {−→QP}+ ((�1,�2, · · · ,�l)) is the notation for
the right hand side below, but we admit the omission of the symbol {· · · } if the set consists of a single element.

29In the case of l = 1, �′1 is a 1-component vector (1), or a scalar 1.
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((e(d)
1 ,e

(d)
2 , · · · ,e

(d)
l )) ⊂ Gl = ((e′

1,e
(d)
2 , · · · ,e

(d)
l )).

Position vectors of points generated by l-tuples of numbers from n<z> have thus expressions

−−→
OP0 = ne′

1,
−−→
OP1 = nze′

1,
−−→
OP2 = nz2e′

1, · · · ,
−−→
OPj = zje′

1, · · · .

These are all vectors in Gl = ((e′
1,e

(d)
2 , · · · ,e

(d)
l )). Therefore, the totality of position vectors for points

congruent to {P0, P1, · · · , Pj , · · · } modulo d is {−−→OP0,
−−→
OP1, · · · ,

−−→
OPj , · · · } + ((e(d)

1 ,e
(d)
2 , · · · ,e

(d)
l )) by

Lemma 10. We thus have:

{−−→OP0,
−−→
OP1, · · · ,

−−→
OPj , · · · } + ((e(d)

1 ,e
(d)
2 , · · · ,e

(d)
l )) ⊂ Gl = ((e′

1,e
(d)
2 , · · · ,e

(d)
l )),

which proves the first half of Theorem 11. As to the total number of lattice points in Cl, we need to
consider only the number of ways to choose integer coefficients of vectors e′

1,e
(d)
2 , · · · ,e

(d)
l so that

e := c1e
′
1 + c2e

(d)
2 + · · · + cle

(d)
l

is in Cl. The first component of e is c1 by (7), so that there are d ways to choose c1 = 0, 1, · · · , d− 1. If
l = 1, these are all of choices to be considered. In cases l ≥ 2, the second component of e is pulled
back to [0, d) by the unique choice of c2. Similarly, c3, · · · , cl are determined uniquely. We thus
obtain exactly d ways to choose the set c1, c2, · · · , cl of integers irrespective of l, which give d lattice
points in Cl. �

We stress that the theorem above applies to any reduced residue class group Z∗
d with modulus

d ≥ 1 that may be composite, and with its arbitrary elements z, n. Namely, Figures 1-6 shown, as
well as all figures to be shown below, conform to this theorem.30 The total d lattice points in the cube
Cl is never occupied fully by the points in Cl generated by <z> and n<z> which can amount only
to �Z∗

d = ϕ(d) < d in number. Figuratively speaking, the lattice in Theorem 11 provides abundant
seats, but they are never occupied fully by points from <z> and n<z>.

The case nearest to the full occupation arises with odd prime modulus d = p > 2, ϕ(d) = d − 1.
The sole vacant seat is the origin of Cl, because 0 is absent in Z∗

p . This observation completes the
usual proof of the lattice structure of <z>, which as a set is the same as n<z> for a primitive root z

in Z∗
p ; we share the identical lattice with the spectral test for this case d = p and its primitive root z.

For d = 2i (i ≥ 4) the generator z ≡ 5 mod (8) in subgroup H1,5 has the order 2i−2, while the seats
provided by Theorem 11 is d = 2i. Thus, occupied seats are only 1/4 of the whole. The lattice in
Theorem 11 for d = 2i is different from those used in the spectral test for this modulus. Since a
detailed proof is not needed below, we note only the following.

Lemma Denote {Pj | 1 ≤ j ≤ 2i−2} for the points31 of l-tuples from <z> generated by z ≡ 5 mod (8)
in Z∗

2i . Define a vector e = τ(1, z, z2, · · · , zl−1). Taking the basis point Q defined by
−→
OQ = −3e, the

position vectors {−−→QPj | 1 ≤ j ≤ 2i−2} occupy the whole of the lattice ((4e,e
(d)
2 ,e

(d)
3 , · · · ,e

(d)
l )) in Cl.

6. Spectral test and the geometrical distribution of points from cyclic sequences

Lattice structures of points generated by l-tuples from cyclic and coset sequences <z> and n<z>

are the source of the power of spectral tests that furnish us with measures of statistical properties of
30As a minute point consider the case l > t, with t for the order of z ∈ Z∗

d . Then the sequence <z> may give the
identical zj+k−1 and zj+k+t−1 to the point Pj as its k-th and k + t-th coordinates. Then d-shifts along these axes should be
restricted to be identical. Restricted d-shifts, however, are included in d-shifts without restriction. Therefore, the statement
that vectors are in the lattice, needs no alteration.

31Such points are plotted typically in Fig. 6 for d = 210.
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numbers arising in these sequences. We refer the reader to penetrating descriptions on the theory,
on the practice and on significant results of spectral tests given in Knuth.32; we shall also have a
feature of the computational structure of spectral tests in Addendum at the end of the report. In this
section we observe briefly some examples for l = 2, in order to obtain intuitional understanding of
contents and terminologies of spectral tests.

Figures 7-10 below show typical cases with primitive root z in the prime modulus d = 251, which
is the same as Figures 1 and 2. As before, the left shows points Pj = (xj/z, xj+1/z) of quotients in
n/d = 1/251, and the right is for Qj = (rj/d, rj+1/d), the points of remainders, both in the frame
−0.05 ≤ x, y ≤ 1.05. Compared to Figures 1 and 2 primitive roots are taken larger, so that these
2-dimensional plots on the left and the right are closer to each other than in Figures 1 and 2.

Distributions of points take diverse forms in these figures, and various interpretations may be
given. Take Fig. 7, and suppose intervals [0, 1] on horizontal and vertical axes are divided by the
width 1/ 3

√
d, for example. Then the square is divided into small squares of area 3

√
d2. If each of these

small squares contains approximately 3
√

d points, in particular irrespective of moderate change of its
shape, we may interpret the figure to represent that consecutive numbers in <z> are appearing

Fig. 7: z = 127, d = p = 251

Fig. 8: z = 61, d = p = 251

32D. E. Knuth, in footnote5, pp. 96-115.
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Fig. 9: z = 54, d = p = 251

Fig. 10: z = 162, d = p = 251

independently. In this sense Fig. 7 shows poor distribution, Fig. 8 is a little better but unsatisfactory,
while Figures 9 and 10 might be felt passable. Spectral tests express these feelings quantitatively.
Namely, the test computes the largest distance λmax between neighboring two lattice lines33 for
respective generator z, and evaluates z higher for smaller λmax.

Let us compute λmax by our hand, magnifying the side of the square to 251. In Fig. 9 for z = 54
we find that λmax is given by the distance from the origin to the line threading points (5, 19) and
(19,22). This gives

(z = 54) : λmax = 251/
√

205.

In Fig. 10 it is given by the distance from the origin to the line connecting (14,9), (11,25). The
computation results in

(z = 162) : λmax = 251/
√

265.

Thus the generator z = 162 is estimated to be the better, justifying the intuition.
33These are straight lines connecting two lattice points. In l ≥ 3 the corresponding notion is (hyper)planes that contain l

lattice points.
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From a purely geometrical point of view in two dimension, the triangle lattice, the case that two
basis vectors form a regular triangle, gives the shortest λmax, upon normalization of the area of the
parallelopiped spanned by base vectors to 1. In other words, the spectral test for l = 2 seeks the
lattice configuration that is nearest to the triangle lattice; this fact will be utilized below for visual
judgments. This ideal lattice cannot be realized by vectors with integer components, so that the
computed λmax is always larger. In the case of Fig. 10 λmax is 104.58% of the theoretical optimum.

Distances of lattice lines, or more generally those of lattice hyperplanes in higher dimensions, are
related to the length of vectors in the so-called dual lattice, and λmax is obtained by calculating the
smallest magnitude of non-zero dual lattice vectors. As noted already,34 G. S. Fishman and L. R.
Moore (1986) performed epoch making spectral tests that exhaust all primitive roots for the prime
modulus d = p = 231 − 1, for dimensions 1 ≤ l ≤ 6; in the terminology used already in Sec. 1, they
gave exhaustive 6-th degree tests. Their criterion was that λmax is within 125% of the theoretical
optimum for respective l = 2, 3, · · · , 6, and only 7.5 × 10−5% of primitive roots are reported to have
passed the test. This would indicate our general fate that we shall have too little chance to obtain a
good generator without the exhaustive tests on possibilities.

Computational procedures of spectral tests, including cases for composite moduluses, will be
sketched in Addendum at the end of this report, in the way to derive simple estimates of the
amount of computations involved. We leave inferences and quotations to Sec. 8, and note here only
the following prospect. For a prime p ≥ 3 any primitive root z modulo p has the order p − 1, and zj

for j coprime to p − 1 are all of primitive roots modulo p. Thus, ϕ(p − 1) ≤ (p − 1)/2 = O(p/2) is the
total number of primitive roots modulo p. This factor enhances the amount of computation of
exhaustive spectral tests, and computational amounts may be diminished if we could concentrate
only on several hopeful candidates for good generators. Thinking of the shuffling nature of the
construction of z out of z1, z2 by Chinese remainder theorem, we might expect fair chances to obtain
good or passable generator z out of a few sets of good primitive roots z1, z2.

We examine this idea in the next section for its structural details, how the composite moduluses
should be chosen, what are the attainable results and so forth. We also discuss in Sec. 8 necessary
amounts of computation, or the complexity of the problem expressed by the total number of cases to
be tested. Before setting out, we note an important motivation for the use of composite moduluses
by considering the geometry of point sets generated. In Figures 1-10, the plot of remainders on the
right may be classified into two cases. In one of them, constituted by Figures 1,4,7-10, plotted point
sets are symmetric with respect to the center M = (1/2,1/2, · · · , 1/2) of the (hyper)cube Cl. In the
remaining Figures 2,3,5 and 6 the point sets are asymmetrical with respect to M. These cases may be
discerned in a simple and generic way described in Theorem 15 below, to which we prepare the
following.

Corollary 14 Let integers d, l ≥ 1 be given. Identify the point P in El with its coordinates as

P := (ξ1, ξ2, · · · , ξl).

Introduce the point Md := (d/2, d/2, · · · , d/2). Let Al be any set of points in El, which is invariant
under d translations along coordinate axes.
(I) Let Nl be an arbitrary point in El and denote A′′

l for the point set that is symmetric to Al with
respect to Nl. Then A′′

l is invariant in d-translations along any coordinate axes of El.
(II) Let A′

l and Al be point sets in El symmetric to Al about Md and the origin O, respectively. Then
A′

l = Al holds true.
34See footnote8.
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(Proof) (I) Consider a set of points A on a line that is invariant under d translations. It is obvious
that the point set A′′ symmetric to A about any point N on the line is invariant under d translations.
As regards the set A′′

l in El symmetric to Al with respect to Nl, the transformation may be realized
by consecutive reflections orthogonal to coordinate axes in each of which d-translation invariance is
conserved. Therefore, A′′

l is d-translation invariant with Al along any coordinate axes.
(II) By (I) A′

l, and Al also, are invariant in d translations along coordinate axes of El. This gives

A′
l = {P′ := (−ξ1 + d,−ξ2 + d, · · · ,−ξl + d)| P = (ξ1, ξ2, · · · , ξl) ∈ Al}

= {P′ = (−ξ1,−ξ2, · · · ,−ξl)| (ξ1, ξ2, · · · , ξl) ∈ Al},
which proves A′

l = Al. �

Theorem 15 Let there be given a modulus d ≥ 1 which may be composite. Take any z, n ∈ Z∗
d

and any integer l ≥ 1. Denote Sl for the point set generated by consecutive l-tuples of integers in the
coset sequence n<z> in Z∗

d ,

Sl := {Pj ≡ (nzj , nzj+1, · · · , nzj+l−1) mod (d)| j = 0, 1, 2, · · · }.
Let S′

l and Sl be point sets symmetric to Sl with respect to the point Md = (d/2, d/2, · · · , d/2) and to
the origin O, respectively.
(I) If −1 ∈<z> mod(d) is true, there holds Sl = S′

l . Namely, the point set formed by l consecutive
numbers of n<z> defined modulo d is symmetric about the point Md, irrespective of the choice of
n ∈ Z∗

d including the case n = 1.
(II) If −1 	∈<z> mod(d) is the case, then Sl ∩ S′

l = φ holds true. Namely, the point set formed by l

consecutive numbers of n<z> defined modulo d is asymmetrical about the point Md, irrespective of
the choice of n ∈ Z∗

d including the case n = 1.

(Proof) Since the points of Sl in El are defined by coordinates with congruence modulo d, Sl is
invariant under d translations along coordinate axes. The same invariance is thus assured for Sl and
S′

l by Corollary 14 (I).
(I) Assume −1 ∈<z> mod(d). Then, taken as numbers in the congruence modulo d, the periodic
sequence − <z> is a shift of another periodic sequence <z>; they are identical except for the choice
of the starting point.35 Thus Sl = Sl holds as sets, and Corollary 14 proves Sl = Sl = S′

l .
(II) Suppose −1 	∈<z> mod(d). Then <z> is a proper subgoup of Z∗

d and has no number in common
with the coset − <z>, with numbers taken in the sense of modulo d. Therefore, n<z> and −n <z>

are also disjoint as sets of numbers modulo d, which implies Sl and Sl defined respectively on them
cannot have a common point in El. Hence Sl ∩Sl = φ holds. Since the relation Sl = S′

l still holds true
by Corollary 14, we have Sl ∩ S′

l = φ, irrespective of the choice of n ∈ Z∗
d including the case n = 1. �

We have now plain but important prospects.

Corollary 16 Let there be given a modulus d ≥ 1 and arbitrary elements z, n ∈ Z∗
d , together with

an integer l ≥ 1. Denote Sl and nSl again for point sets generated in El by l-tuples of integers from
the cyclic sequence <z> and its coset sequence n<z>, respectively, with the inclusion of all points
having congruent coordinates modulo d.
(I) If Z∗

d is cyclic and z is its generator, then Sl = nSl is symmetric about Md = (d/2, d/2, · · · , d/2),
the center of the (hyper)cube Cd.
(II) In order for Sl and nSl to be not symmetric with respect to Md, it is necessary that z is not a
generator of Z∗

d .
35Putting −1 ≡ zk, we have－ <z>≡ {zk, zk+1, · · · , zk+j−1, · · · } mod (d).
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(III) In particular, any generator z ≡ 5 mod (2i) in the subgroup H1,5 of Z∗
2i generates Sl and nSl that

get rid of the symmetry with respect to Md for any n ∈ Z∗
2i = A

(2i)
1 ∪ A

(2i)
3 ∪ A

(2i)
5 ∪ A

(2i)
7 .

(Proof) (I) If Z∗
d is cyclic and z is its generator, <z> necessarily contains n ∈ Z∗

d as well as
−1 ≡ d − 1 ∈ Z∗

d . Hence Sl = nSl holds, and the conclusion follows by (I) of Theorem 15.
(II) For the asymmetry of Sl and nSl with respect to Md, it is necessary (and sufficient) that
−1 	∈<z> holds by Theorem 15 (II). This certainly necessiates that z is not a generator of Z∗

d .

(III) Assumption z ≡ 5 mod (8) gives zj ∈ H1,5, while −1 is in A
(2i)
7 . Because of H1,5 ∩ A

(2i)
7 = φ we

have −1 	∈<z>, and Theorem 15 (II) proves the statement. �

7. Designs of uniform and independent random number sequences

With the obtained perspective we now turn to realistic aspects of composite modulus generators
for uniform and independent random numbers. We start with cases of two odd primes forming the
modulus, and gradually generalize the setting.

7A. Moduluses formed by the product of two odd primes

Let us reconfirm procedures and settings. We choose two distinct odd primes p1, p2 such that

q1 := (p1 − 1)/2, q2 := (p2 − 1)/2

are co-prime. We next select good multipliers, z1’s and z2’s for moduluses p1 and p2, respectively, by
6-th degree exhaustive spectral tests. Then we choose another suitable element n ∈ Z∗

p1p2
with

properties36

n ≈ (n1, n2) mod (p1, p2).

Chinese remainder theorem will finally provide us with the multiplier z ∈ Z∗
p1p2

and the coset
sequence n<z> by

z ≡ z1 mod (p1), z ≡ z2 mod (p2), nzj ≡ n1z1
jU1 + n2z2

jU2 mod (d = p1p2), j = 1, 2, · · · .

The multiplier z has necessarily an even order t = LCM(p1 − 1, p2 − 1) = 2q1q2. The cyclic sequence
<z> and the coset sequence n<z> for n 	∈<z>, then form an exact division of the group Z∗

p1p2
into

two halves. The final spectral test on z in Z∗
p1p2

examines the distribution of d = p1p2 seats of a
lattice characterized by z, d in the (hyper)cube Cd with sides of length d in the l-dimensional space
El, l ≥ 2. The seats are occupied by points generated by consecutive l-tuples of numbers from <z>

and n<z>, but leave vacancies (including the origin ) totaling to p1 + p2 − 1. This the plot of the
show to be presented.

Let us see what happens in reality with miniature cases for l = 2, the 2nd degree spectral tests.
The point of significance is whether 2-dimensional configuration of seats realizes patterns close to a
triangular lattice. The following Figures 11a-13c show plots of 2-tuples from <z> in the same setting
as Figures 1-10.

Figures 11a,b use twin primes p1 = 59, p2 = 61 to ensure co-prime q1 = 29 and q2 = 30. Primitive
roots, (z1, z2) = (13,44) mod (59,61) for Fig. 11a, and (50 ≡ 13−1, 44) mod (59,61) for Fig. 11b, are
chosen by their excellent performance in respective prime moduluses. The composite performance
shown in Fig. 11a is poor as a 2-dimensional spectral test. In view of the individual excellence of z1

36The choice may well be started from n1, n2 and then n may be obtained as below by Chinese remainder theorem.
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and z2, this is a problem arising from the combination, and may be ascribed to the closeness of
periods, , similar to beats of sound waves or Moire fringes in optics. A moral will be that we should
avoid twin primes as constituents of composite moduluses. Another point to be noted is that Fig.
11b shows some improvements, by the replacement of z1 in Fig. 11a with its inverse that makes the
sequence <z1> mod(p1 = 59) move backward. This simple modification deserves trial in every
case. Thus, all figures below are associated with b-named ones testing the possibility.

Figures 12a,b take odd primes (p1, p2) = (43,59) with a larger separation. Results are better; the
difference between a and b is somewhat subtle. Figures 13a,b are still better; in particular Fig.13b is
one of the best results obtained. Figure 13c shows the same plot as Fig. 13b for <z>, with the plot of
points from the coset n<z> added.

Figure 13c is attractive, and we are tempted to use its <z> and n<z> consecutively. This usage
would realize, however, a statistically highly improbable integer sequence, viz. the sequence for 1/d

first and then the sequence for n/d. Or, we may say that <z> and its coset are strongly correlated.
Though (almost) complete filling of seats, arising in single odd prime modulus cases with primitive
root z or with z ≡ 5 mod (8) in d = 2i moduluses, is similarly attractive, we should refrain from the

Fig. 11a: Modulus d = 3599 = 59 × 61, z = 898 ≈ (13,44) mod (59,61).

Fig. 11b: Modulus d = 59 × 61, z = 227 ≈ (50 ≡ 13−1, 44) mod (59,61).
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Fig. 12a: Modulus d = 2537 = 43 × 59, z = 190 ≈ (18,13) mod (43,59).

Fig 12b: Modulus d = 2537, z = 485 ≈ (12 ≡ 18−1, 13) mod (43,59).

Fig. 13a: Modulus d = 2867 = 47 × 61, z = 2813 ≈ (40,7) mod (47,61).
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Fig. 13b: Modulus d = 2867 = 47 × 61, z = 678 ≈ (20 ≡ 40−1, 7) mod (47,61).

Fig. 13c: Modulus d = 47 × 61, z = 678 ≈ (20,7) mod (47,61), initial values (1, 1) and (1, 7).

use of the whole of <z> by the same reason.
It will be in order to note that Figures 11a,b and 13a,b have no symmetry with respect to the center

of the square, while Figures 12a,b do have the symmetry. We now show that the use of two or more
odd primes for the composite modulus furnishes us rooms to control this symmetry at our will.

Theorem 17 Let p1, p2 be distinct odd primes. Assume q1 := (p1 − 1)/2 and q2 := (p2 − 1)/2 are
coprime, GCD(q1, q2) = 1. Take arbitrary primitive roots z1, z2 of primes p1, p2, respectively, and
form z ∈ Z∗

d (d = p1p2) by Chinese Remainder Theorem 4 as

z :≡ z1U1 + z2U2 mod (d), z ≡ z1 mod (p1), z ≡ z2 mod (p2).

(I) If q1, q2 are both odd, the set Sl of points generated by l-tuples of numbers from the cyclic
sequence <z> or nSl from its coset n<z> are both symmetric about Md = (d/2, d/2, · · · , d/2) for all
dimensions l ≥ 1.
(II) If q1, q2 consist of even and odd coprime integers, both sets Sl and nSl are asymmetrical with
respect to Md for any l ≥ 1.

(Proof) By Theorem 15 we need only to see whether −1 is included in <z> or not. In other words,
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we inquire the existence of an integer j ≥ 1 that gives zj ≡ −1 mod (d). Since z1 is a primitive root
modulo p1, (z1)j ≡ 1 mod (p1) occurs for the first time at j = p1 − 1 = 2q1, and (z1)j sweeps all of
Z∗

p1
including −1 ≡ p1 − 1 mod (p1). These imply (z1)q1 ≡ −1 mod (p1). Likewise, there holds

(z2)q2 ≡ −1 mod (p2). As regards z, its order (or the LCM period) in Z∗
p1p2

is 2q1q2, as discussed
before. Therefore, the sole possibility of zj ≡ −1 mod (d) arises with j = q1q2. Now we have

zq1q2 ≈ ((z1)q1q2, (z2)q1q2) ≡ ((−1)q2 , (−1)q1) (mod (p1, p2)).

If q1, q2 are both odd, this gives zq1q2 ≈ ((−1)q2 , (−1)q1) = (−1,−1). Therefore, Corollary 3 assures
zq1q2 ≡ −1 mod (p1p2), and Sl and nSl are both symmetric with respect to Md, proving (I). If q1 and
q2 differ in their parity, the above congruence relation on the r.h.s. reduces to ±(1,−1). Thus
Corollary 3 again works to prove z 	≡ −1 mod (p1p2),37 and the conclusion (II) follows. �

The statements may be generalized to the case with s odd primes.

Corollary 18 Let integer s ≥ 2 be arbitrary, and take s odd primes p1, p2, · · · , ps with mutually
coprime {qj := (pj − 1)/2 (1 ≤ j ≤ s)}. Put d := p1p2 · · · ps and choose a primitive root zj modulo pj

for respective j (1 ≤ j ≤ s). Define z by Chinese remainder theorem 4 as:

z :≡ z1U1 + z2U2 + · · · + zsUs mod (d), z ≈ (z1, z2, · · · , zs) mod (p1, p2, · · · , ps).

For any l ≥ 1 denote Sl and nSl for sets of points of l-tuples generated, respectively, from the cyclic
sequence <z> and from the coset sequence n<z> in Z∗

d with an arbitrary n ∈ Z∗
d . The necessary and

sufficient condition that the sets Sl and nSl are asymmetrical about Md := (d/2, d/2, · · · , d/2) is that
q1, q2, · · · , qs consist of one even integer and all others that are odd.

(Proof) By the conditions given, z has the order t in the form of

t = LCM(2q1, 2q2, · · · , 2qs) = 2q1q2 · · · qs.

Therefore, we need to examine, once and for all for j = q1q2 · · · qs, whether zj ≡ −1 mod (d) holds or
not. Since q1, q2, · · · , qs are mutually coprime, the dichotomy is that, none or the only one, of them is
even, others being all odd. In the former case, it is now obvious that zq1q2···qs ≡ −1 mod (d) holds
true, and Sl, nSl are symmetric about Md. As for the latter, let qi be the sole even integer. There hold

zq1q2···qs ≡ (zj)q1q2···qs ≡ (−1)qi = 1 mod (qj), j 	= i.

Thus, Corollary 3 stipulates zq1q2···qs 	≡ −1 mod (d) and −1 	∈<z>, implying the asymmetry of Sl and
nSl with respect to Md. �

Conclusions of Theorem 17 will be readily confirmed on Figures 11a-13b.

7B. Modulus 2i for the component of direct product groups

The subgroup H1,5 of the reduced residue class group Z∗
2i (i ≥ 4) has been of frequent use as

uniform and independent random numbers. Since its generator z ≡ 5 mod (8) has the period 2i−2, it
can be used as a component of a direct product group only in combination with odd prime modulus
groups in order to prevent further loss in the LCM period. Even with this restriction, however, the

37Since Z∗
p1p2 is not cyclic, the algebraic equation z2 − 1 ≡ 0 mod (p1p2) in Z∗

p1p2 can have more than two solutions
besides ±1. An example is seen in Z∗

8 ; the equation z2 ≡ 1 mod (8) has 4 solutions z = 1, 3, 5, 7. Also the case of twin
primes p1, p2 = a ± 1 has an extra answer z ≡ a (mod p1p2). In this case of twin primes Sl is invariably asymmetric with
respect to Md. Yet the setting is not adequate for random number generators as we have seen.
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situation does not improve for H1,5. The complicated circumstances will be seen most feasibly again
by figures. Below we show some two-dimensional plots of cases with d = d1d2 = p1 × 256 together
with a few odd prime d1 = p1, as examples for the relevant composite moduluses.

Figures 14a,b show the multiplier z isomorphic to (z1 = 12, z2 = 37) mod (67,256), both of z1 and
z2 showing high performances in moduluses d1 = 67 and d2 = 256, respectively. The component
multipliers in respective groups have orders 66 and 26 = 64 which are situated, so to say, closest
possible to each other. Chinese remainder theorem 4 gives

z ≡ 12U1 + 37U2 ≡ 7717 mod (67 × 256 = 17152),

and the order or the period of <z> is (67 − 1) × 26/2 = 2112. Figure 14a plots 2-tuples from <z> on
the right, and the 2-tuples of the quotient sequence on the left, all as before. Figure 14b inverts z1 to
28 ≡ 12−1 mod (67) with

z = 28U1 + 37U2 ≡ 1309 mod (17152),

as the multiplier in Z∗
17152. Since all these details will be calculable out from figure captions, we shall

give only relevant expositions on respective figures hereafter.

Fig.14a: modulus d = 17152 = 67 × 256, z = 7717 ≡ (12,37) mod (67,256).

Fig. 14b: modulus d = 67 × 256, z = 1309 ≡ (28 ≡ 12−1, 37) mod (67,256).



30

Fig. 15a: d = 21248 = 83 × 256, z = 6437 ≡ (46,37) mod (83,256).

Fig. 15b: 法 d = 83 × 256, z = 7461 ≡ (74 ≡ 46−1, 37) mod (83,256).

Fig. 15c: d = 21248, z = 7461, initial values (1, 1), (46,1) mod (83,256).

The performance is poor in Fig. 14a, as expected by the closeness of component periods. We
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should admit improvements in Fig. 14b, but conspicuous patterns are now surprising. It should be
noted that, as we observe the development of the plot from the start, we recognize patterns only
after a considerable portion, say 3/4, of the period is used up. This is not that the initial, small
portion of Fig. 14b may be used as random numbers; the patterns are always ruling the way of
number generation, so that strong correlations are inherent in every portion of the sequence.

Figures 15a,b stand for more separated component periods, but improvements are unsatisfactory.
Figure 15c shows Fig. 15b with added points taken from a coset n<z>; participating integers form a
subgroup isomorphic to Z∗

83 × H1,5, that occupies the half of Z∗
21248 ≈ Z∗

83 × Z∗
256. The patterns of

Fig. 15b are erased out, and vacancies corresponding isomorphically to,

(83,1), (83,5), (83,9), (83,13), · · · , (83,249), (83,253),

show up totaling to (253 − 1)/4 + 1 = 64 in number. Be that as it may, we can never use any portion
of Figures 14a-15b as uniform and independent random number sequences, because correlations
leading to Figures 15a,b in these sequences rule the generation at any stage of their periods.

In fact, the correlation originates from a flaw residing in any cyclic sequence in H1,5 ⊂ Z∗
2i . The

points will become clear by plotting the cyclic sequence in the isomorphic, direct product group.
Figure 16 below shows the best combination for the modulus d = 47 × 256 = 12032, as found by
authors. The left shows the points (zj/d, zj+1/d) formed by 2-tuples from the cyclic sequence <z>

which are pulled back to the unit square by the congruence modulo d. The multiplier is z = 349 ≈
(20,93) mod (47,256). The right plot gives points (20j/47,93j/256) from the direct product group,
with the coordinates normalized by the congruence modulo (47,256). The multiplier 93 ≡ 5 mod (8)
gives 93j ≡ 5 mod (8) for odd j, while even j gives 1 mod (8). This regularity of the least significant
3 bits in multiplicative congruential generators modulo 2i has long been known. The small flaw is
magnified here, so to say, by the paired zj

1 ≡ 20j mod (47); integers zj for odd j become correlated
as they are forced to correspond to 5 mod (8), while those for even j are tied together to 1 mod (8);
see the plot on the right.

For comparison, we show in Fig. 17 the case of two odd primes forming a composite modulus.
This is another one of the best results in such composite moduluses. The reader is asked to consult
figure captions for details. The differences in the product group plots on the right of Figures 16 and
17 will be impressive.

Fig. 16: Modulus d = 47 × 256 = 12032, z = 349 ≈ (20,93) mod (47,256).
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Fig 17: Modulus d = 47 × 61 = 2867, z = 678 ≈ (20,7) mod (47,61).

The significant moral here is that powers of 2 should be excluded in composite moduluses. This
stipulates also that moduluses such as 10i should be avoided. At the same time we should note that
spectral tests cannot detect the cases with pattern formation, as shown by Fig.15c. Thus, generic
consideration on the configuration will be decisive in taking full advantage of the power of spectral
tests on composite modulus groups. The choice of two odd primes for the modulus will be the best
for our human skill, as well as from various points of view including problems of computability
noted in the next section.

8. Complexity of spectral tests, conclusions and comments

Our endeavor might well be classified as belonging to pursuits of the possibility of shuffling in
random number problems. Including similar composite modulus problems, there would have been
many such efforts. Our luck among those was that, starting from simple arithmetic structures
inherent in any integer sequences, we were lead to the ingenious mechanism of Chinese remainder
theorem that conserves group structures of multiplicative congruential generators. The prospects
obtained enable us now to restate prescriptions noted in Sec. 1 fully, but for the ambiguity about l

left in (IV). They run as follows with due supplements.

(I) Choose two odd, distinct primes p1, p2, which should not be too close and should fulfill the
condition that q1 = (p1 − 1)/2, q2 = (p2 − 1)/2 are coprime with different in parity.

(II) Choose sets of best of multipliers {z1, z
′
1, · · · }, {z2, z2, · · · } for moduluses p1, p2, respectively, by

exhaustive spectral tests of 6-th degree.

(III) Find the multiplier z ≈ (z1, z2) mod (p1, p2) with Chinese remainder theorem.

(IV) Perform the spectral test on z in Z∗
p1p2

up to the appropriate degree l.

If the performance found in (IV) is not satisfactory in the closeness to the theoretical optimum, we
need to try different choices of component multipliers and repeat the test. If the result is passable,
we have the design of the uniform and independent random number generator with the period
T = 2q1q2 and the precision of O(1/T ).

Once the set of parameters d, z, n are given, there is no problem in the installation of the generator
on computers and in letting it run fast in programs. However, the multiplier z should be prepared
by computation, or should be tested within a reasonable time on computers. We have repeatedly
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noted that procedures of exhaustive tests of (II) for primes p1, p2 = O(232) were realized as early as
1986 by Fishman and Moore. The problem is to estimate the amount of computations needed in
(IV), which will determine the degree l of possible spectral test for the multiplier z ∈ Z∗

p1p2
. We leave

the detailed algebra of estimates to Addendum at the end of this report.38 Here we simply quote the
result and discuss their implications.

If the spectral test is up to the 6-th degree and on the modulus d, the complexity A(d), the amount
of cases to be examined, is given as follows:

A(d) � 2d2 + 22d3 + 23d4 + 24d5 + 25d6.

In the particular case that odd primes p1, p2 have the magnitude O(p), this gives

A(d = p2) � 2p4 + 22p6 + 23p8 + 24p10 + 25p12.

If a single multiplier z ∈ Z∗
p1p2

is to be tested spectrally up to l-th degree, the term of p2l in the above
gives the relevant complexity.

As regards two sets of exhaustive spectral test for p1 and p2, respectively, the complexity may be
estimated to the following B(p). First, the number of primitive roots of a prime p is ϕ(p − 1) ≤ p/2.
Second, spectral test starts from the case of l = 2 and gradually proceeds to a larger l. Therefore, if
the multiplier turn out to be not passable at l′, then it does not survive in the next step l′ + 1. Thus,
the number of primitive roots to be examined diminishes as l increases. We might well assume that
the rate of survival is a constant 0 < κ < 1. We further assume that the exhaustive tests extend to
l = 6-th degree always. These give the following:

B(p) � 2{(p/2) · (2p2) + κ(p/2) · (22p3) + κ2(p/2) · (23p4) + κ3(p/2) · (24p5) + κ4(p/2) · (25p6)}
= 2p3 + 22κp4 + 23κ2p5 + 24κ3p6 + 25κ4p7.

To have the rate κ, we quote again the result of Fishman and Moore who reported that 7.5 × 10−5%
of primitive roots passed the test to survive. If this is to have been realized by a constant κ, then we
have κ4 � 7.5 × 10−7, implying κ = 0.0294283 · · · . Thus, the exhaustive spectral tests in two sets
give the complexity

B(p) � 2κ4p7 (κ � 0.029, p ≥ 220).

As described in Sec. 1, if we choose l = 6 as the desirable degree for the test in (IV), and if it is
computable at d = p2, then

(The term of p12 in A(d = p2)) � 25p12 ≥ B(p) � 25κ4p7 (κ = 0.029, p ≥ 220)

should hold. It is certainly the case, and the exhaustive tests in two sets would always be possible.
If the choice of l in (IV) are l = 4, 5, the comparison of complexities of the 2nd stage spectral test

and the exhaustive tests do not change the direction of the inequality noted above. Thus, choices
l = 4, 5, 6 in (IV) imply that we should take first the modulus d = p2 so that the second stage test is

38A brief conceptual descriptions will be in order. As partially noted, spectral tests form a class of problems that search
the smallest positive length of vectors in a lattice determined by d, z. The greatest engineering problem has been to find
the art to diminish the range of integers to be swept before starting the search; see pp. 96-115 of the penetrating textbook
of D. E. Knuth in footnote5. Authors could not give neat estimates in taking the effect of reduction processes into account.
Therefore, we describe in Addendum the bare amount of computation, the total number without reduction, of cases to be
searched. This would certainly give a measure for the volume of the problem, though the value will not be realistic for the
practical use.
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possible, and then start the exhaustive tests for p =
√

d which is assured to be computable. All is
determined by the computer speed that rules the possible magnitude of p of the second stage
spectral test, for choices of l = 4, 5, 6.

If we require l = 3 as the degree of spectral test in the second degree, the matter changes. The
comparison of complexities of the second, single test and the first, exhaustive tests takes the form

(The term of p6 in A(p2)) = 22p6 < 25κ4p7 = 2.40 × 10−5p7 (p ≥ 220).

Therefore, the single spectral test for the modulus d = p2 would always be computable. Recipes
(I)-(IV) give now the generator with the period T = p2 which is undergone third degree spectral
tests, and the results stated in Sec. 1 are concluded.

Let us reflect on existing multiplicative congruential generators with the attained insights. If we
would use a single, odd prime modulus p with a primitive root generator z, length of the sequence
<z> should be limited to O(p/2) to avoid the correlation induced by the symmetry of Sl which is
the same as any coset nSl. If we prefer the modulus d = 2i and the generator z ≡ 5 mod (8), the lack
of the symmetry around the center of the hypercube is gratifying. Yet, <z> generates points that
occupy all of their seats furnished by the lattice noted in Lemma at the end of Sec. 5. This
completeness is suggestive that we had better not use the whole of <z> in this case also, because the
last half of the period is felt to be correlated to the first half in that points are destined to fill the
vacancies left by the former. Far longer periods and the assurance of the performance with
composite modulus generators will ease simulations in many respects.

Consider the direct product group consisting of s ≥ 3 component groups. The composite
modulus d should not contain powers of 2, by the same reason found in Sec. 7B. Thus, for the
modulus d we assume s distinct odd primes p1, p2, · · · , ps with mutually coprime

qj := (pj − 1)/2, 1 ≤ j ≤ s.

We also take primitive roots z1, z2, · · · , zs for respective primes, and use z ≈ (z1, z2, · · · , zs) as the
multiplier. The order of Z∗

d (d = p1p2 · · · ps) is

�Z∗
d = (p1 − 1)(p2 − 1) · · · (ps − 1) = 2sq1q2 · · · qs,

while the period T of <z> is

T = LCM(p1 − 1, p2 − 1. · · · , ps − 1) = 2q1q2 · · · qs = (�Z∗
d )/2s−1.

As s increases from 2, the cyclic sequence occupies smaller and smaller portion of the group Z∗
d .

This might reduce the power of the spectral test that is measuring only seats for the whole group.
Also, magnitude of p1, p2, · · · will need to be reduced so that the test on the composite modulus
d = p1p2 · · · should be computable. Thinking over these we feel at present that the choice of s = 2
will be the optimum.

We have left the case of moduluses of powers of odd primes. Though the modulus d = pi for an
odd prime p does not relate Z∗

pi to a product group, it enjoys a large order �Z∗
pi = ϕ(pi) = pi − pi−1.

However, comparisons with the composite modulus group Z∗
p1p2

remind us of the lack of freedom
in choosing not only the combined modulus d = p1p2, but also the geometry of Sl and nSl.39 Also,

39There is, of course, ways to realize −1 �∈<z> artificially. Let z be a generator of Z∗
pi . By T = �Z∗

pi = pi−1(p − 1) we
may choose q := (p − 1)/2 to be odd, and take choose an arbitrary odd integer j that is coprime to p, q. Then z′ := z2j has
the order T/2 with −1 �∈<z′>. But the utility of such a choice is not clear.
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generators of Z∗
pi is restricted to the primitive roots of Z∗

p but for the addition of some powers of p,
which further restrains the design in choosing the generator. In view of the long period tenable with
two-odd-prime moduluses, there will be little interest in the modulus d = pi cases.

We believe that insights obtained are large in amount. Yet, we do not know what an odd prime
length T portion of a good, uniform and independent random sequence is doing, except for the
puzzling fact that they are not using cyclic groups nor any generators of cyclic groups. The
circumstance, however, may be regarded as suggesting that many interesting, unknown structures
are waiting. Contributions from people in various engineering and scientific fields are waited for.

———————————————————————————————-
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Addendum: Complexity of Spectral Tests for Multiplicative Congruential Method

As before we take vectors to be in column forms. We have seen in Sec. 5 that these position
vectors (or points) are in a lattice spanned by bases or vectors of the basis:

f1 := e′
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
z

z2

·
·
·

zl−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f2 := e
(d)
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
d

0
·
·
·
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f3 := e
(d)
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
d

·
·
·
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, · · · , f l := e
(d)
l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
·
·
·
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Linear independence of these vectors are obvious by inspection or by the determinant dl−1 they
form. Correspondingly, basis vectors of the dual lattice are determined uniquely by the relation of
their inner products with those of the original lattice:

(f∗
j ,fk) = dδjk, 1 ≤ j, k ≤ l. (E1)

Their explicit forms are readily seen as follows:40

f∗
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d

0
0
·
·
·
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f∗
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−z

1
0
·
·
·
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, f∗
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−z2

0
1
·
·
·
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, · · · , f∗
l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−zl−1

0
0
·
·
·
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E2)

Irrespective of whether a vector a = τ(a1, a2, · · · , al) is in the lattice or in the dual, we define the
length ‖ a ‖ by the Euclidean norm as

‖ a ‖:=
√

a1
2 + a2

2 + · · · + al
2.

The lattice spanned by a linearly independent set {g1,g2, · · · ,gl} of vectors in El was denoted by

((g1,g2, · · · ,gl)) := {c1g1 + c2g2 + · · · + clgl| c1, c2 · · · , cl ∈ Z},

where Z denotes the set of intergers. Points in El are called lattice points if their position vectors are
in the lattice. The spectral test relies on the following fact:

Lemma E1 Denote λ
(l)
max for the largest distance in El between parallel, neighboring hyperplanes,

each of which contains at least l − 1 lattice points of Gl := ((f1,f2, · · · ,f l)). Let also denote µ
(l)
min for

the shortest, positive length of vectors in the dual lattice G∗
l := ((f∗

1,f
∗
2, · · · ,f∗

l )). There holds the
relation λ

(l)
max = d/µ

(l)
min. (End of Lemma A1)

40In order to apply linear algebra efficiently, vectors in the dual lattice might better be defined as row vectors. For
example, defining bases of the lattice as column vectors that form a square matrix F := (�1,�2, · · · ,� l), and taking bases
of the dual lattice as row vectors forming another square matrix F ∗ defined by tF ∗ := (�∗

1,�
∗
2, · · · ,�∗

l ), we have for (E1)
simple expressions

F ∗F = dI (I is the l × l unit matrix), F ∗ = dF−1.

The clarity of this compact expression will be obvious in showing the structures associated with lattice bases and their
duals. At this place we hasten, however, to the content of spectral tests, and will not use this convention only later,
stressing our rule that bold face vectors represent column vectors.
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This is well-known; we refer the reader to the penetrating textbook of Knuth.41

The spectral test of multiplicative congruential random numbers generated by z in Z∗
d looks for

λ
(l)
max defined above, and Lemma E1 converts the problem to the search of shortest vectors in

G∗
l := ((f∗

1,f
∗
2, · · · ,f∗

l )) formed by (E2). Despite the frightening name of the shortest vector problem,
the test presents a very mild type of the problem that admits polynomial complexity, thanks to the
simplifying structure of (E2). We recapitulate that a vector v in G∗

l are defined by

v = c∗1f
∗
1 + c∗2f

∗
2 + · · · + c∗l f

∗
l

with integer coefficients (c∗1, c∗2, · · · , c∗l ), and conversely, any integer set c1, c2, · · · , cl gives a dual
lattice vector v by this form. As a vector in El, v ∈ G∗

l also has the representation

v = t(ξ∗1 , ξ∗2 , · · · , ξ∗l ),

in cartesian coordinates. A set of integer cartesian coordinates (ξ∗1 , ξ∗2 , · · · , ξ∗l ) cannot always give a
vector in G∗

l . However, a simple criterion exists discerning cases.

Lemma E2 A necessary and sufficient condition for a vector v in El with integer cartesian
coordinates v = t(ξ∗1 , ξ∗2 , · · · , ξ∗l ) to be in the dual lattice G∗

l = ((f∗
1,f

∗
2, · · · ,f∗

l )) is given by the
following:

ξ∗1 + zξ∗2 + z2ξ∗3 + · · · + zl−1ξ∗l ≡ 0 mod (d). (E3)

(Proof) A necessary and sufficient condition for v to be in the dual lattice is the existence of a set
of integers {c1, c2, · · · , cl} giving

v = c∗1f
∗
1 + c∗2f

∗
2 + c∗3f

∗
3 + · · · + c∗l f

∗
l

= t(c∗1d − zc∗2 − z2c∗3 − · · · − zl−1c∗l , c
∗
2, c

∗
3, · · · , c∗l ).

This relation may be rewritten for respective integer coordinates of v as

ξ∗2 = c∗2, ξ∗3 = c∗3, · · · , ξ∗l = c∗l ; ξ∗1 = c∗1d − zξ∗2 − z2ξ∗3 − · · · − zl−1ξ∗l .

They are manifestly equivalent to the following to hold true,

ξ∗1 + zξ∗2 + z2ξ∗3 + · · · + zl−1ξ∗l = c∗1d,

which is the same as (E3). �

The conclusion solves the problem with spectral tests. Given a modulus d (which may be a
composite integer) and an element z ∈ Z∗

d , we need to find the set {ξ∗1 , ξ∗2 , · · · , ξ∗l } of cartesian
coordinates satisfying (E3) that give the smallest positive value µ

(l)
min to√

(ξ∗1)2 + (ξ∗2)2 + · · · + (ξ∗l )2 =‖ v ‖ .

The larger the value of µ
(l)
min, the better is the multiplier z. Since the set (E2) is given as dual basis

vectors, upper bounds of the length of v are known to start with. We need only to pick out cartesian
coordinates within this bound that satisfy (3), compute ‖ v ‖ as above, and compare results to find
the smallest. The problem is a search in a finite range. Though d and z in practice might horrify us
with their magnitude of O(232) or larger, structures of (E2) give us further simplifications.

41D. E. Knuth, in footnote5, Sec. 3.3.4.
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We notice that forms of dual basis vectors in (E2) imply that bases for the dimension l + 1 contains
those for the dimension l by obvious identifications. Therefore, µ

(l)
min is not increasing as l increases,

and µ
(l)
min provides an upper bound for µ

(l+1)
min . The spectral test should thus be started with the case

l = 2 and carried out by increasing l step by step. This fact enables us to consider the upper bound
for the overall amount of computation (or complexity) in a very simple way.
Lemma E3 Let a modulus d and a multiplier z ∈ Z∗

d be given. The complexity of the spectral test,
the number of cases to be examined, for a single multiplier z up to the 6-th degree is given by

A(d) � 2d2 + 22ρ3d3 + 23ρ8d4 + 24ρ15d5 + 25ρ24d6. (E4)

Here 0 < ρ < 1is the assumed constant rate of that gives µ
(l)
min = ρµ

l−1)
min (2 ≤ l ≤ 6) with µ

(1)
min := d.

(Proof) In the case l = 2, cartesian coordinates ξ∗1 , ξ∗2 of integers exhaust possibilities in the range
(−d, d). Hence the complexity, the total number of cases to be examined, is {2(d − 1) + 1}2. Sicne ±v

give the same length ‖ v ‖ and do or do not fulfill (E3) simultaneously, we need to take only one of
them to estimate the complexity as 2d2 for d large. In the case l = 3, we need to consider integers
ξ∗j (j = 1, 2, 3) respectively in the range −µ

(2)
min ≤ ξ∗j ≤ µ

(2)
min. By assumption µ

(2)
min = ρµ

(1)
min = ρd hold

the total number of cases to be searched is (2ρd)3/2 = 22ρ3d3. Proceeding similarly, we have for
l = 4 the estimate (2ρ2d)4/2 = 23ρ8d4, and so forth, and we have (E4). The construction reveals that
the single spectral test up to the l-th degree is given by the term of dl in (E4). �

A natural idea to estimate the constant ρ is to consider ideal cases. In Sec. 6 for cases of l = 2 we
took the triangle and derived the distance of opposite sides 4

√
3/
√

2 of rhombus as ideal. The idea
may be brought to higher dimension l by considering regular tetrahedron and so forth. A slightly
different but more feasible way will be to think of diameters of spheres of volume 1 in l-dimensional
spaces. They are given by

(l = 2) πr2 (l = 3) 4πr3/3 (l = 4) π2r4

(l = 5) 8π2r5/15 (l = 6) π3r6/6.

Thus the diameter al of the sphere in the l-dimensional space El with volume 1 gives their inverses

1/a2 = 0.88623, 1/a3 = 0.80600, 1/a4 = 0.74523,

1/a5 = 0.69700, 1/a6 = 0.65744,

together with their ratios

a3/a2 = 0.90947, a4/a3 = 0.92460, a5/a4 = 0.93528, a6/a5 = 0.94324.

These may be averaged to give ρ � 0.92815. However, this gives ρ24 = 0.167 · · · , and (E4) is little
affected by putting all of this ρ as 1. Thus we used in Sec. 8 a simplification of (E4),

A(d) � 2d2 + 22d3 + 23d4 + 24d5 + 25d6. (E5)

—————————————————————————————–


