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Constructive Design of Uniform and
Independent Random Number Generators

Naoya Nakazawa1 and Hiroshi Nakazawa2

Kronecker said: God made natural numbers, all else is the work of man. As inventors guess, he
would have meant that the whole mathematics stood on God’s invention of natural numbers, or of the
recurrence relation xk+1 = xk + 1 with x1 = 1; toils, inspirations and thoughts of excellent people
thereafter enabled us to have rationals, reals, complex numbers, matrices, geometry, analysis, and the
algebraic systems among others. Inventors at present are in the extreme distance from the state to
appreciate the depth and beauties of these mathematics of our day. Yet the perspective, that the whole
system of mathematics is built from the simplest recursive relation, encourages us. We present here
ways of constructing excellent generators of uniform and independent random numbers on computers.
A plain fact working behind computers is that any finite sequence {uk| 0 < uk < 1, k = 1, 2, · · · , T}
of uniformly bounded real numbers may be regarded as obtained by a multiplicative congruential
method. We put this to the basis of the technological way to generate random numbers. Certainly,
this deed seems not defying Gods, as they bless human graciously by allowing for the disclosure of
some of their integers of brilliant performances.

1. Introduction

As the use of distilled water without impurities is indispensable to secure stable and accurate

chemical transformations, random numbers with various statistics are obtained on computers by

highly accurate analytic transformations, but only from purely uniform and independent ones. The

generation of random numbers with highly accurate uniformity and independence is thus vital to

theories and any computer simulations that utilize various types of random numbers. The aim of this

report is to present inventions for methods to generate random number sequences on computers with

radically improved accuracy in their statistics. It should be noted that theories of probability or

stochastic processes invariably rest on premises that sequences consist of infinite elements and that

numbers treated have infinite precision of real numbers . They bring in many simplifications as well

as unifications, typically in forms of limit theorems or ergodic theorems. In contrast, computers can

treat only a finite length T for the sequence, however large T might be. And their real numbers can

only be discrete with the smallest unit of precision. Finiteness of sequences and discreteness of

numbers usually raise complications. Yet, our conscious use of finiteness and discreteness frees us

from various metaphysical problems, such as the question of the possibility of generation itself of

random numbers on computers.
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We proceed here assuming explicitly the finiteness of treated numbers and sequences. As will be

elucidated shortly, this enables us to concentrate on the multiplicative and congruential generation of

uniform and independent random numbers, which comprises

a positive integer d called modulus,

a positive integer z called multiplier coprime to d, and

a positive integer n called initial value or seed also coprime to d,

emits a sequence {rk ≡ nzk mod (d)| 0 < rk < d, k = 0, 1, 2, · · · } of integers recursively by

congruence relations

r0 ≡ n mod (d), rk+1 ≡ zrk mod (d), 0 < rk < d, k = 0, 1, 2, · · · ,

and gives the sequence {v1, v2, v3, · · · } for random numbers in the interval (0, 1) as

{vk = rk−1/d| k = 1, 2, 3, · · · }.

Note the staggered definition of vk and rk−1 adopted here for some later conveniences. A

multiplicative congruential generator for uniform and independent random numbers with the

modulus d, the multiplier z and the initial value n will be noted symbolically as (d, z, n). If the

initial value n is not relevant in arguments, the symbol will be shortened to (d, z). It is not that the

information of random numbers is compressed into three numbers (d, z, n); it is the totality of

prescriptions given by (d, z, n) and the vast amount of ensuing computational works to obtain the

sequence: Can we judge, or even only guess, which set of three integers (d, z, n) will give a good or

bad sequence of random numbers without toilsome and time-consuming computation, say of spectral

tests? The answer is definitely no.

2. Description of the Related Art

We start with the general mathematical and technological characterization of the problem.

Generators of random numbers on computers are required to be reproducible, i.e. they should give

the identical sequence of random numbers on demands of users, typically in their need to debug

simulation programs. Generators should also be transportable, i.e. they should reproduce the

identical sequence of random numbers on any computers and in any computing languages. And

simulations usually require too many random numbers to be stored in the computer memory. Thus,

random numbers on computers can only be generated successively by the integer arithmetic, which

is free from truncation and round-off errors, gives the identical results on any computers or in any

computing languages, or even after any number of times of computation. Thus, computers should

produce a sequence {x1, x2, · · · , xT} of integers bounded as 0 ≤ xk < z for all k with a sufficiently
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large integer z, and emit uk := xk/z successively for k = 1, 2, · · · as uniform and independent

random numbers finally by the real or rational arithmetic. The number of different states, in any

computer available for the determination of the next integer output, is finite. Hence its initial state

inevitably recurs, and the length of the random number sequence specified by T is restricted to be

finite. Let {x1, x2, · · · , xT} be an arbitrary finite sequence of integers within a bound 0 ≤ xk < z.

Excluding two cases that {x1, x2, · · · , xT} are all zero and all d − 1, we have a simple circumstance

that this sequence corresponds to a period of the periodic sequence arising in the division process of

an irreducible fraction x := n/d with 0 < n < d or 1 < x < 1 to the base z,

x = 0.x1x2 · · ·xT x1x2 · · ·xT · · · = (x1z
T−1 + x2z

T−2 + · · ·xT )/(zT − 1) = n/d.

Since the divisor d is a factor of zT − 1, d and z are coprime. Division processes of n over d never

end, and are expressed by equations starting from r0 ≡ n mod (d),

zrk−1 = dxk + rk, 1 ≤ rk < d, 0 ≤ xk < z, rk ≡ zrk−1 mod (d), k = 1, 2, 3, · · · .

A significant point to be noted is that the recursive equation divided by dz gives the key estimate,

0 < rk−1/d − xk/z = rk/(dz) < 1/z, k = 1, 2, · · · .

This estimate represents a trivial fact: If a remainder is small in the division of n by d, then the next

quotient is small. However, the result is not trivial at all. In practice the integer z is larger than 230,

and 1/z is negligibly small as a bound. The inequality proves that each term in any sequence

{uk := xk/z| k = 1, 2, · · · , T}, which is to give uniform random number on a computer, is

approximated as vk − 1/z < uk < vk within a small and uniform error bound 1/z ≤ 2−30 by the

corresponding sequence

{vk := rk−1/d| 0 < vk < 1, rk−1 ≡ nzk−1 mod (d), k = 1, 2, · · · , T},

which is precisely the multiplicative congruential random number sequence generated by (d, z, n).

As a mathematical principle, therefore, we need only to concentrate on finding a multiplicative

congruential random number generator (d, z, n) of sufficiently long period T with good uniformity

and independence. This transparent and firm perspective on the problem is further reinforced by

spectral tests which are inseparably tied to multiplicative congruential generation of random

numbers.

There have been two distinct types of choice in prior arts for the pair (d, z) of multiplicative

congruential generator. One is formed by a large odd prime modulus d = p with its primitive root

multiplier z, and realizes the period T = ϕ(p) = p − 1, where ϕ is the Euler’s function. The other
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consists of a modulus d = 2i with i ≥ 4 and any multiplier z ≡ 5 mod (8) for the period T = 2i−2.

Both of these generators realize the largest period among all possible choices of multipliers for

respective moduluses, and feasibly admit their respective spectral tests by plain mathematical

principles, putting aside the resultant heavy computational burdens. Present inventions are direct

descendants of the former, the pair of an odd prime modulus and its primitive root. Fishman and

Moore (1986)3 gave the monumental spectral tests on the Mersenne prime modulus d = p = 231 − 1,

and revealed the general and decisive fact that integers allow us to find a good generator (d, z) only

by testing all primitive roots exhaustively, not at all admitting any hint that certain multipliers will be

good or bad. This finding, however, disclosed a fundamental difficulty; the amount of computation

increases in proportion to dθ with the exponent θ ≥ 3/2 in exhaustive spectral tests. The test itself

should be performed on the fastest computers of the time. And the computer requires its mounted

random number generator to provide the largest number T of random numbers that can be consumed

or computed in simulations of a month, say. This T should be the lower limit of the period that the

random number generator (d, z) should have at any cost, but T ≤ d/2 is a structural limitation of

multiplicative congruential method. Thus, computers have the limit of computability proportional to

d, but exhaustive spectral tests demand the total amount proportional to dθ of computation with

θ ≥ 3/2. This is the non-computability problem. Nakazawa and Nakazawa (2012a,b)4 found that a

breakthrough for this difficulty exists in the use of moduluses formed by products of two odd prime

powers. Such constructions would reduce the computing time of exhaustive spectral tests to O(dθ)

with θ < 1, while reserving the ratio of the period T to the modulus d to the value as large as the

case of a pair of a prime and its primitive root. This is the design in which we look for the excellent

generator (d, z, n) of uniform and independent random numbers.

3. Brief Summary of Inventions

Items (i1)-(i3) below outline the inventions to be presented. Though they refer to respective,

distinct facet of the generation of uniform and independent random numbers, their integration will be

seen to work strongly reinforcing each other.

(i1) A new, extended design of spectral tests as a strengthened sieve to extract a promising pair (d, z)

3Fishman and Moore (1986): G. S. Fishman and L. R. Moore, An exhaustive analysis of multiplicative congruential
random number generators with modulus 231 − 1. SIAM Journal on Scientific and Statistical Computing, Vol. 7 (1986),
pp. 24-45.

4Nakazawa and Nakazawa (2012a): N. Nakazawa and H. Nakazawa, Computational progress in spectral tests of mul-
tiplicative congruential generators for uniform and independent random numbers realized by moduluses formed with two
odd primes. Filename computable.pdf, uploaded in http://www10.plala.or.jp/h-nkzw/ (October 26, 2012).
Nakazawa and Nakazawa (2012b): N. Nakazawa and H. Nakazawa, Multiplicative congruential generators with mod-
uluses formed by two odd-prime-factors for uniform and independent random numbers I. Computational analysis of
structures. Filename revpopesq1.pdf, uploaded in http://www10.plala.or.jp/h-nkzw/ (September 15-17, 2012, corrected
on October 31, 2012).
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of an odd modulus d and the multiplier z coprime to d as multiplicative congruential generator for

uniform and independent random numbers with reliable statistical performance. Their resultant

valuations should always be shown to consumers or users as the tag list for the generator (d, z)

certifying its performances.

(i2) A new system of designs for the multiplicative congruential generator (d, z) comprising the

modulus d and the multiplier z characterized by the following conditions i2a)-i2e).

i2a) The modulus d = d1d2 is a product of pairwise coprime factors d1 and d2 formed by

two distinct odd primes p1 and p2 as dk = pk
ik for k = 1, 2 with indices i1 ≥ 1 and i2 ≥ 1.

i2b) Said odd prime p1 has the form p1 = 2q +1 and said odd prime p2 has the form p2 =

4r + 1, with another odd primes q and r.

i2c) The multiplier z satisfies either one of the congruence relations z ≡ z1 mod (d1) or

z ≡ −z1 mod (d1) for a primitive root z1 of d1.

i2d) The multiplier z satisfies the congruence relation z ≡ z2 mod (d2) for a primitive

root z2 of d2.

i2e) Noted odd primes p1, p2, q, r are all distinct.

(i3) Another new system of designs for the multiplicative congruential generator (d, z) comprising

the modulus d and the multiplier z specified by the following conditions i3a)-i3e).

i3a) the modulus d = d1d2 is a product of pairwise coprime factors d1 and d2 formed by

two distinct odd primes p1 and p2 as dk = pk
ik for k = 1, 2 with indices i1 ≥ 1 and i2 ≥ 1.

i3b) Said odd prime p1 has the form p1 = 2q1 + 1 and said odd prime p2 has the form

p2 = 2q2 + 1 with another odd primes q1 and q2.

i3c) The multiplier z satisfies either the congruence relation z ≡ z1 mod (d1) or the

congruence relation z ≡ −z1 mod (d1) for a primitive root z1 of d1.

i3d) The multiplier z satisfies either the congruence relation z ≡ z2 mod (d2) or the

congruence relation z ≡ −z2 mod (d2) for a primitive root z2 of d2.

i3e) Noted odd primes p1, p2, q1, q2 are all distinct.

The use of the noted invention (i2) should be started by taking sufficiently many primitive root

multipliers, z1 of d1 and z2 of d2, in said items i2c) and i2d). They are recommended to be sieved in

preparation by the extended spectral test of (i1). Then, taking ±z1 and z2 one after another, we need

to use Sun Tzu’s construction for the multiplier z by the system of congruence relations in i2c) and

i2d), to let (d, z) undergo (i1) as the second stage 2nd degree spectral test, and to let the passers

undergo the final, higher degree spectral tests. The total passers, presumably very few if they do

exist at all, are the brightest generators to be used on computers.
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Likewise, the use of noted invention (i3) should be started by taking sufficiently many primitive

root multipliers z1 of d1 and z2 of d2 in said items i3c) and i3d). They are again recommended to be

sieved in preparation by the extended spectral test of (i1). Taking selected candidate ±z1 and ±z2

one after another, we use Sun Tzu’s construction for the multiplier z by the system of congruence

relations in i3c) and i3d), let (d, z) undergo (i1) as the second stage 2nd degree spectral tests, and

pick out the aimed generator for use on computers, if we could find excellent ones at all through

higher degree spectral tests.

4. Detailed Description of the First Invention

4.1. Second Degree Spectral Tests

In order to expel ambiguities from descriptions, the sequence {n, nz, nz2, · · · } from the

multiplicative congruential generator (d, z, n) will first be taken as an infinite sequence without

equivalence relations modulo d. Corresponding random numbers are reproduced as

v1 = r0/d, r0 = n, 1 < r0 < d,

vk = rk−1/d, rk ≡ nzk mod (d), 1 < rk < d, k = 1, 2, · · · .

We start with the 2nd degree spectral test taking consecutive 2-tuples from the generated sequence.

Define the vector Qk := (nzk−1, nzk) = nzk−1(1, z); the vector Qk is identified with the position

vector of the point, and we call Qk freely as the point itself. Let Qk
′ denote any integer vector with

coordinates equivalent to those of Qk modulo d. Manifestly, Qk
′ is obtained from the vector Qk by

some integral multiples of d translations along coordinate axes. Along the 2nd coordinate axis the d

translation is effected by adding the vector e2 := (0, d). And the d translation along the 1st axis is

realized by adding

e1
′ := (d, 0) = d(1, z) − z(0, d) = d(1, z) − ze2.

Therefore, every vector Qk
′ with coordinates equivalent to Qk modulo d is an integral linear

combination of basis vectors

e1 := (1, z), e2 := (0, d),

which are linearly independent in the sense that they give a non-zero determinant. All vectors or

points with coordinates equivalent to those of Qk are thus in the lattice spanned by basis vectors (or

bases) {e1, e2}. We say points are in the lattice, because they cannot occupy the whole of lattice

points. Typically, Qk
′ cannot be any of points whose one or both of coordinates are equivalent to 0

modulo d. Let Cd denote the square in the Euclidean plane E2 issuing from the origin with the

interval [0, d) as sides along axes. A significant fact is that this lattice is destined to have only d



7

lattice points in Cd. As a handy proof we may note that vectors {e1, e2} span the area d by their

Figure 1 Geometry of 2-tuples of random numbers and spectral test valuation ρ

ρ = 1.0503 (257, 27) ρ = 1.0983 (283, 83)

ρ = 1.1459 (317, 245) ρ = 1.1982 (281, 266)

ρ = 1.2491 (277, 20) ρ = 1.3012 (283, 113)



8

ρ = 1.3501 (311, 297) ρ = 1.3947 (251, 76)

ρ = 1.4547 (251, 46) ρ = 1.4959 (281, 117)

ρ = 1.9915 (419, 381) ρ = 2.7283 (419, 262)

determinant, while the square Cd has the area d2. More convincingly, a lattice vector

je1 + ke2 = j(1, z) + k(0, d) = (j, jz + kd)
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with integers j, k has the first component j which in Cd can take only {0, 1, · · · , d − 1} as its d

different values. Once j is fixed, the integer k has only one possible value so as for the second

component jz + kd to be in the interval [0, d). The square Cd thus has exactly d lattice points. The

generator (d, z, n) gives points {Qk} in Cd whose modulo d equivalents are seated among these d

lattice points. The rate of occupation of these d lattice seats can only be (d − 1)/d at the maximum.

The comprehension of noted facts is helped greatly by visual experiences. In the preceding two

pages we showed plots of seats in the plane E2 to be occupied by (nzk−1, nzk) mod (d), consecutive

2-tuples from the generator (d, z) with a prime d and its primitive root z. The square depicted are

taken slightly larger to include the square Cd of sides d issuing from the origin inside. Visual

discernibility necessitates us to take small moduluses d ≈ 200 with their suitable primitive roots z.

Irrespective of these specific choices, plots show the general tendency. If z is not primitive, then

plots should occupy only an integral fraction of these points by Lagrange’s theorem. If the origin is

supplemented, points will exhaust all of lattice points. The quantity ρ := ρ
(2)
d (z) > 1 is the valuation

of the geometrical distribution of lattice points for respective generator (d, z). The definition of ρ

will be given later. At this place it is only relevant to note that ρ closer to 1 from above implies that

lattice points distribute more closely to the so-called triangular lattice. If ρ >> 1 is the case, the

configuration packs lattice points into fewer parallel lines (lattice lines) with large spacing between

them. The spectral tests aims to find and pick out such a generator (d, z) with the valuation ρ closer

to 1 from above. The historical criterion of Fishman and Moore (1986) was ρ < 1.25 for the

passability of the generator (d, z).

4.2. The 1st Invention on the 2nd Degree Spectral Tests

Second degree spectral tests examine the geometry of the distribution of seats for points of two

consecutive random numbers (rk, rk+1) ≡ nzk−1(1, z) mod (d). Just as the egg of Columbus, the

problem is almost trivial if only we think of the geometrical distribution of points

(rk, rk+l) ≡ nzk−1(1, zl) mod (d), l = 1, 2, 3, · · · ,

which for any l = 2, 3, · · · should be as good as the results for the generator (d, z) if the random

numbers are truly uniform and independent. The geometry is examined easily by the 2nd degree

spectral tests of the multiplier zl mod (d), or of the generator (d, zl), provided that this generator

gives a long period comparable to that of the generator (d, z). And, happy to say, 2nd degree

spectral tests are easy to compute. Let us see what happens with the classical generators of Fishman

and Moore (1986). Their Table 2 lists top 5 primitive root multipliers for the Mersenne prime

modulus d = 231 − 1 = 2147483647 in the form of the row named a) in the following Lists 2A-2E.
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The row named 1/a) shows inverses of values in row a), which correspond by definition to ρ-values5

List 2A z = 742938285

2nd 3rd 4th 5th 6th
a) 0.8673 0.8607 0.8627 0.8320 0.8342

1/a) 1.1530 1.1618 1.1592 1.2019 1.1988
b) 1.15306751 1.16186656 1.15915450 1.20199716 1.19882541

2nd of z2 2nd of z3 2nd of z4 2nd of z5 2nd of z6

c) 1.91805599 1.81316446 1.32378868 3.25782855 1.04479227

List 2B z = 950706376

2nd 3rd 4th 5th 6th
a) 0.8574 0.8985 0.8692 0.8337 0.8274

1/a) 1.1663 1.1130 1.1505 1.1995 1.2086
b) 1.16627569 1.11291561 1.15054146 1.19946130 1.20856552

2nd of z2 2nd of z3 2nd of z4 2nd of z5 2nd of z6

c) 1.19708825 6.76681886 1.46420589 5.00940631 2.26206864

List 2C z = 1226874159

2nd 3rd 4th 5th 6th
a) 0.8411 0.8787 0.8255 0.8378 0.8441

1/a) 1.1889 1.1380 1.2114 1.1936 1.1847
b) 1.18893209 1.13803984 1.21140770 1.19360615 1.18426026

2nd of z2 2nd of z3 2nd of z4 2nd of z5 2nd of z6

c) 3.51885751 2.19846315 1.15368543 1.47158421 1.48916585

List 2D z = 62089911

2nd 3rd 4th 5th 6th
a) 0.8930 0.8903 0.8575 0.8630 0.8249

1/a) 1.1198 1.1232 1.1662 1.1587 1.2123
b) 1.11986188 1.12320242 1.16615693 1.15876257 1.21227975

2nd of z2 2nd of z3 2nd of z4 2nd of z5 2nd of z6

c) 1.79072973 1.44118579 1.20332225 1.17058675 1.63022644

List 2E z = 1343714483

2nd 3rd 4th 5th 6th
a) 0.8237 0.8324 0.8245 0.8262 0.8255

1/a) 1.2140 1.2013 1.2129 1.2104 1.2114
b) 1.21411121 1.20130010 1.21290241 1.21035116 1.21145141

2nd of z2 2nd of z3 2nd of z4 2nd of z5 2nd of z6

c) 1.99192650 1.45479150 1.13241226 1.56904222 1.04455900

5The numbers in the following lists were copied from the computer outputs and pasted. But inventors readily make
mistypes and overlook fall out of numerals in revisions of manuscripts, and handling of manuscripts out from a patent
office to another is liable to introduce complications further. Inventors express their deep regrets for their insufficient cares
about all such errors, and ask readers to consider the circumstance and to rely on the following lists as the sufficiently
proved originals.
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listed in the row b). The row c) gives the valuations of our present concern, valuations of the 2nd

spectral test on (d, zl) for 2 ≤ l ≤ 6.

Computing processes to obtain these data are very easy, but results lead us to grave and significant

recognitions. To be frank, we do not feel like using these listed multipliers or the generators (d, z) on

our computers. More efficient use of the data from easily executable 2nd degree spectral tests of

(d, zl) generators for l = 2, 3, · · · should be made in finding and selecting an excellent generator

(d, z) for our use in simulations. Admitting that this standpoint is approved, a significant question is:

To how large an index l we should examine? At the present status of inventors’ experiences the

range 1 ≤ l ≤ 12 seems to be the most adequate. Though we believe that passer generators (d, zl)

for l ≥ 13 will exist in the 2nd degree spectral test, we could not find a passer within a reasonable

magnitude of computing time. Since noted tests are only preparatory, they should give within

available computing time sufficiently many passers to te tested further by 3rd to 6th degree spectral

tests. In this respect 2nd tests for 1 ≤ l ≤ 12 seem very fruitful and adequate. On the one hand they

diminish candidates very efficiently within manageable time, and a few final passers of excellence

could be found, again within a reasonable time. Of course, the final passers cannot be said abundant,

but we strongly recommend to consult these 2nd tests as a standard mehod and indispensable device

for the selection. We also recommend to post their results tagged on the generator as an able

certificate of its excellence.6

5. The Second Invention

5.1. Preparations

From a more general point of view the facts listed in Tables 2A-2E show that the Mersenne prime

modulus d = p = 231 − 1 will not have a primitive root multiplier of satisfactory performance. We

need to examine more odd primes, odd prime powers, or products of two such odd prime powers,

and find good multiplicative congruential generators. The modulus d = p = 231 − 1 is, above all, too

small for computers of our day, and we should proceed to d ≈ 248 or larger, say. We are thus

confronted by difficulties of computability, and the possible way out is only to choose moduluses

6At this place we warn that spectral tests of degree l ≥ 3 require revisions, and should be tried only with the next
invention that will be accounted for later. It is not that the conventional spectral tests of such degrees, which aim to pick
out the smallest value of the largest distances between parallel adjacent lattice hyperplanes, are in the wrong; all their
procedures adopted up to the present invention from 1986 work correctly to their ends. The point is that they cannot
realize the true aim of spectral tests, as realized and shown for the first time in the next invention of ours. It will be in
order to note that excellent generators with two odd-prime-power moduluses were found only with the use of said new
inventions of ours. Such successes are matters of course by the shuffling nature of the synthesis by Sun Tzus theorem, if
subgenerators are to give excellent uniform and independent random number sequences. But conventional spectral tests
have missed in selecting such (sub)generators of excellence in degrees l ≥ 3. In this relation we also note that List 2A to
List 2E in the preceding page present the non-revised 3rd to 6th results. Their revisions will be seen in the report to come
with some notable consequences.
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formed by two odd primes or two odd prime powers. Furthermore, we have to solve new problems

arising with associated generators (d, z2), (d, z3), · · · : Examine first their periods, and ask also on

the existence or not of −1 in sequences they generate. Then perform at least 2nd degree tests of

(d, z2), (d, z3), · · · , so as to delete generators of little hope at the early stage of computation. Finally,

go to 3rd to 6th spectral tests of outliving candidate generators.

Computational burdens should be diminished by any means. Happy to say, integers graciously

allow us to note two new designs as particularly suited to alleviate some portions of these burdens.

We concentrate here on preparations to facilitate the description of them. Two simple mathematical

corollaries are the start. They suggest ways to select primes that have their primitive roots with

orders consisting of small number of prime factor, and the knowledge will facilitate us to perform

exhaustive spectral tests over relevant primitive roots.

Let an odd prime p be expressed as p = 2q + 1, and assume that the integer q is also an odd

prime.7 Examples p = 7 with q = 3 or p = 23 with q = 11 prove the existence of such prime pairs.

In fact, computer experiments suggest their abundant, limitless existence. The following holds true.

Corollary 1. Let an odd prime p ≥ 7 has the form p = 2q + 1 with another odd prime q. Then

2q − 2 integers in [2, p − 2 ≡ −2] form q − 1 pairs, each of which (z,−z) consists of a primitive

root z of the order ϕ(p) = p − 1 = 2q and its negative −z with the order q.

(Proof) The group Zp :≡ {1, 2, · · ·p − 1 = 2q} modulo prime p is cyclic. Lagrange’s theorem

restricts the order of any element of Zp to 1, 2, q or 2q for prime q. The equation z1 ≡ 1 has the

unique solution z ≡ 1, and z ≡ ±1 are all of solutions of z2 ≡ 1. Any other 2q − 2 integers have

either q or 2q for their order. If the odd q is the order of z, then (−z)q ≡ −1 holds and −z is a

primitive root. If z is a primitive root, (−z)q ≡ 1 ensures −z to have the order q. �
The above corollary implies that z = 2 is either a primitive root or its negative modulo the noted

special prime p. Thus, any relevant multiplier z modulo p may be expressed as a power of 2, and this

fact helps and simplifies the execution of exhaustive spectral tests for such (p, z) generators.

Consider now an odd prime p of the form p = 4r + 1 with another odd prime r. Examples p = 13

or 29, and computer experiments convince us that such an odd prime p will exist without limit.

Corollary 2. If an odd prime p ≥ 13 has the form p = 4r + 1 with another odd prime r, then z = 2

is a primitive root of p.

(Proof) Direct computations of the power of 2 for p = 13 show that 2 is a primitive root modulo

13. We therefore assume p ≥ 29, r ≥ 7. The group of integers coprime to p consists of ϕ(p) = 4r

equivalence classes, and Lagrange’s theorem stipulates that the order of z = 2 is a factor of 4r,

7This type of prime q was used by Sophie Germain in her classic contribution to Fermat’s last theorem. See Harold
M. Edwards: Fermat’s Last Theorem in Graduate Texts in Mathematics 50, Springer (1977).
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which are exhausted by {1, 2, 4, r, 2r, 4r}. The assumption p ≥ 29 proves that the order of z = 2 is

not 1, 2, 4. We prove that z2r ≡ −1 mod (p); this proves that zr is not equivalent to 1 modulo p, so

that the order of z = 2 is 4r and full. The product

M := (2 · 1)(2 · 2) · · · (2 · r) · {2 · (r + 1)}{2 · (r + 2)} · · · {2 · (2r)} = 22r(2r)!

has another expression modulo p:

M = 2 · 4 · · · (2r) · (2r + 2) · (2r + 4) · · · (2r + 2r)

= 2 · 4 · · · (2r) · · · {p − (2r − 1)} · {p − (2r − 3)} · · · (p − 1)

≡ (−1)r(2r)! = −(2r)! mod (p).

Note that r is odd. We thus have 22r(2r)! ≡ −(2r)! mod (p), or 22r ≡ −1 mod (p) because (2r)! is

coprime to the odd prime p = 4r + 1. �
This proof was communicated to Hiroshi Nakazawa by Naoya Nakazawa on April 17, 2013. Just as

Corollary 1, this comprehension is helpful for exhaustive spectral tests of (p, z).

Computations with noted corollaries at once suggest the following:

Conjecture 3. If an odd prime p ≥ 7 has the form p = 2q + 1 with another odd prime q, then for

any integral exponent i ≥ 1 the multiplier z = 2 either is a primitive root of d = pi with the order

ϕ(pi) = 2qpi−1 = 2qd/p, or is the negative of a primitive root with qpi−1 = qd/p for its half-full

order. (End of Conjecture 3)

Conjecture 4. If an odd prime p ≥ 13 has the form p = 4r + 1 with another odd prime r, then for

any integral exponent i ≥ 1 the multiplier z = 2 has the full order ϕ(pi) = 4rpi−1 = 4rd/p and is a

primitive root of d = pi. (End of Conjecture 4)

These Conjectures are true if only they could be shown for the case i = 2, but we could not arrive at

the proof. Yet, computers prove that they are true up to p < 107 = 223.25; they might well be

imagined true and, if we need some modulus of the form pi, we may readily let computers confirm

the conjecture with z = 2 at the start.

Stated Corollaries and Conjectures suggest us to start the design of multiplicative congruential

generators using odd primes of noted types. Besides the said facilities that they give ϕ(pi) with small

numbers of prime factors and simplify ways to sweep over their primitive roots, we shall find in this

way more of structural advantages, related to the necessity for us to consider generators of the type

(d, zj) with j ≥ 2, by giving them simpler structures of periods.

5.2. Further Preparations to Describe Second and Third Inventions

For proofs on the 2nd and the 3rd inventions, it will be advisable to summarize necessary notions

further. Computations to come are all performed on the stage of moduluses formed by two odd
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prime powers, and involve two main players, pairs of primitive roots for respective odd prime

powers that construct multipliers by Sun Tzu’s construction from systems of congruence relations.

Our concern is to compute periods realized by noted arrangements, and also to answer the question

whether −1 arises or not in generated sequences.

Arguments will be helped greatly by the following corollaries.

Corollary 5. Let d1, d2 be mutually coprime integers, and let zk be a multiplier coprime to dk for

k = 1, 2. Assume that the generator (dk, zk) has the order or the period Tk, and they are synthesized

into the generator (d, z) defined by

d := d1d2, z :≡ zk mod (dk), k = 1, 2.

The cyclic sequence, generated from (d, z) and now defined as G(z; d) :≡ {1, z, z2, · · · } mod (d),

has the order or the period T as the least common multiple, T := LCM(T1, T2).

(Proof) At this occasion we refer to Sun Tzu’s construction associated with his theorem that gives

the solution z of noted system of congruence relations modulo d. Since d1 and d2 are coprime with

GCD(d1, d2) = 1, Euclidean algorithm gives integers A, B satisfying Ad1 + Bd2 = 1. Integers

U1 := Bd2 = 1 − Ad1 and U2 := Ad1 = 1 − Bd2 are determined by d1 and d2 alone without

dependence on z1 or z2, and satisfy Uj mod (dk) = δjk. Therefore, a solution z of noted system of

congruence relations is

z ≡ z1U1 + z2U2 mod (d).

Any other solution z′ gives z − z′ ≡ 0 mod (dk) for both of k = 1, 2, so that z − z′ is divisible by

coprime d1 as well as d2, or by d = d1d2 = LCM(d1, d2). Hence z′ ≡ z mod (d) holds true as the

uniqueness modulo d. Direct computations of zj or the observation zj ≡ (zk)
j mod (dk) for k = 1, 2

at once prove

zj ≡ (z1)
jU1 + (z2)

jU2 mod (d), j = 1, 2, · · · .

Increasing j up to T , we have

1 ≡ zT ≡ (z1)
T U1 + (z2)

T U2 mod (d),

for which (zk)
T ≡ 1 mod (dk) should hold true for k = 1, 2. Therefore, the order or the period of

G(z; d) is the least common multiple of T1 and T2 �
The statement below will be obvious.

Corollary 6. Assume that the generator (d, z) or its cyclic sequence G(z; d) has the period or the

order T . The generator (d, zj) or the cyclic sequence G(zj ; d) realizes the period

T (j) := T/GCD(j, T )
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for any power index j = 1, 2, · · · . (End of Corollary 6)

We may note several summaries that will help discussions on the appearance or not of −1 in the

cyclic sequence G(zj ; d) of the generator (d, zj), in particular for z defined by congruence relations

z ≡ zk mod (dk) for k = 1, 2 with coprime d1 and d2.

Corollary 7. (A1) If the cyclic sequence G(z; d) does not include −1 mod (d), then cyclic

sequences G(zj ; d) for any index j = 1, 2, · · · are free from −1 modulo d.

(A2) Resume the notation T (j) for the order or the period of the cyclic sequence G(zj ; d) with any

j = 1, 2, · · · . In order for G(zj ; d) to include −1 mod (d), the period T (j) is necessarily even. The

contraposition is: If T (j) is odd, the cyclic sequence G(zj ; d) does not include −1 modulo d.

(B) If the modulus d = d1d2 is a product of two coprime factors d1 and d2, and z is defined by

z ≡ zk mod (dk) for k = 1, 2, then following statements (B1) and (B2) hold true on the appearance

or not of −1 in the cyclic sequence G(zj ; d).

(B1) If at least one of component cyclic sequences G(zk; dk) for k = 1 or 2 is devoid of −1

modulo dk, then the cyclic sequence G(zj ; d) for any index j = 1, 2, · · · is free from −1 modulo d.

(B2) Let the modulus d = d1d2 be composite, and the index j ≥ 1 be arbitrary. An even period

T (j) of the cyclic sequence G(zj ; d) is not always sufficient for the appearance of −1 modulo d in

G(zj ; d). A necessary and sufficient condition for the appearance of −1 modulo d in G(zj ; d) is that

T (j) is even and both of cyclic subsequences {G((zk)
j; dk)| k = 1, 2} have −1 modulo dk in tune at

T (j)/2, i.e. there hold {(zk)
j}T (j)/2 ≡ −1 mod (dk) for both of k = 1 and 2.

(Proof) (A1) The assertion is obvious, because the cyclic group G(zj ; d) for any j = 2, 3, · · · is a

subgroup contained in the larger reduced residue class group G(z; d) of integers modulo d.

(A2) If the cyclic sequence G(zj ; d) has −1 ≡ d − 1 mod (d) at 0 < T ′ < T (j), then we have

(zj)T ′ ≡ −1 mod (d), (zj)2T ′ ≡ 1 mod (d). Thus, 0 < 2T ′ < 2T (j) is a multiple of T (j), and

2T ′ = T (j) holds true. Hence T (j) is necessarily even with T ′ = T (j)/2.

(B1) If the cyclic sequence G(z; d) has −1 ≡ d − 1 mod (d), then G(zk; dk) ≡ G(z; d) mod (dk)

contains −1 mod (dk) for both of k = 1, 2. The contraposition proves the assertion.

(B2) We shall soon see an example of the cyclic sequence G(zj ; d) with an even T (j) but without

−1. We prove the necessary and sufficient part. If −1 is in the cyclic sequence G(zj ; d), then T (j) is

even by (A2), and also (zj)T (j)/2 ≡ −1 mod (d) is true by the proof of (A2). Therefore, we have

relations

(zj)T (j)/2 ≡ {(zk)
j}T (j)/2 ≡ −1 mod (dk), k = 1, 2,

which is the necessary part of (B2). Suppose conversely that T (j) is even and congruence relations

(zj)T (j)/2 ≡ −1 mod (dk), k = 1, 2,
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hold true. These are the system of congruence relations,

(zj)T (j)/2 ≡ {(zk)
j}T (j)/2 ≡ −1 mod (dk), k = 1, 2,

and (zj)T (j)/2 ≡ −1 mod (d) is manifestly their modulo d unique solution. Hence the sufficient part

of (B2) follows. �

6. Second and Third Inventions

6.1. The Second Invention

We are now able to describe with ease two inventions on structurally advantageous designs of

multiplicative congruential generator (d, z). One of them takes the construction of (d, z) fulfilling 7

conditions (2a)-(2g) listed below.

(2a) The modulus d is a product of two coprime factors d = d1d2, where d1 and d2 will be called

submoduluses.

(2b) The submodulus d1 = (p1)
i1 is a power of an odd prime p1 with an integral index i1 ≥ 1 and

the odd prime p1 has the form p1 = 2q + 1 with another odd prime q.

(2c) The submodulus d2 = (p2)
i2 is a power of an odd prime p2 with an integral index i2 ≥ 1 and

the odd prime p2 has the form p2 = 4r + 1 with another odd prime r.

(2d) Odd primes p1, p2, q, r are all distinct.

(2e) The multiplier z is defined by the system of congruence equations,

z ≡ zk mod (dk), k = 1, 2,

where z1 and z2 will be called submultipliers.

(2f) The submultiplier z1 is either a primitive root, or the negative of a primitive root, of the

submodulus d1.

(2g) The submultiplier z2 is a primitive root of the submodulus d2.

These constitute the 2nd invention to be described. Performances of the generator (d, zj) designed

by these specifications (2a)-(2g) are posted in the next page as List 3A and List 3B. Emphases are

here on the quantity which we name the efficiency of the generator (d, zj) for respective j = 1, 2, · · ·
and symbolize as τ :

(efficiency) := τ := {usable period of (d, zj)}/d.

The first List 3A refers to the choice of the submultiplier z1 that is a primitive root of the

submodulus d1 = (p1)
i1 . The generator (d1, z1) will be called the subgenerator. By assumption z1

has the largest order T1 modulo d1,

T1 := ϕ(d1) = {(p1)
i1−1}(p1 − 1) = 2qd1/p1.
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List 3A z1 is a primitive root of d1 with the order 2qd1/p1,
z2 is a primitive root of d2 with the order 4rd2/p2.

The LCM order of Is the cyclic sequence Approximate
zj

z′ := zj modulo d of z′ inclusive of −1? τ
z 4qrd1d2/(p1p2) no 1/2
z2 2qrd1d2/(p1p2) no 1/4
z3 4qrd1d2/(p1p2) no 1/2
z4 qrd1d2/(p1p2) no 1/8
z5 4qrd1d2/(p1p2) no 1/2
z6 2qrd1d2/(p1p2) no 1/4
z7 4qrd1d2/(p1p2) no 1/2
z8 qrd1d2/(p1p2) no 1/8

List 3B z1 is the negative of a primitive root of d1 with the order qd1/p1,
z2 is a primitive root of d2 with the order 4rd2/p2.

The LCM order of Is the cyclic sequence Approximate
zj

z′ := zj modulo d of z′ inclusive of −1? τ
z 4qrd1d2/(p1p2) no 1/2
z2 2qrd1d2/(p1p2) no 1/4
z3 4qrd1d2/(p1p2) no 1/2
z4 qrd1d2/(p1p2) no 1/8
z5 4qrd1d2/(p1p2) no 1/2
z6 2qrd1d2/(p1p2) no 1/4
z7 4qrd1d2/(p1p2) no 1/2
z8 qrd1d2/(p1p2) no 1/8

The subgenerator (d2, z2) has the primitive root z2 of the submodulus d2, and gives the largest order

T2 modulo d2,

T2 := ϕ(d2) = {(p2)
i2−1}(p2 − 1) = 4rd2/p2.

The generator (d = d1d2, z) is defined by the system of congruence relations specified in (2e), and

Corollary 5 ensures the synthesized (d, z) to have the least common multiple order or period T ,

T := LCM(T1, T2) = LCM(2qd1/p1, 4rd2/p2) = 4qrd/(p1p2).

The order of (d, zj) may now be computed by Corollary 6 for any j = 1, 2, 3, · · · as

T (j) := {the period of G(zj ; d)} = T/GCD(j, T ) = T/GCD(j, 4qrd/(p1p2)).

The formula gives three meaningful cases, by the assumed (2a)-(2d):
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(2A1) If j < min(q, r) is odd, then the order T (j) = T .

(2A2) If j < min(q, r) is even but not a multiple of 4, then T (j) = T/2.

(2A3) If j < min(q, r) is a multiple of 4, then T (j) = T/4.

We should turn next to examine whether −1 arises or not in the cyclic sequence G(zj ; d) and find the

usable period, to be denoted Tu
(j), of G(zj ; d) in the use as independent random numbers. We should

creep through the situation that submultipliers z1, z2 are primitive roots and necessary itinerate

respective −1 in their cyclic sequences. We therefore resort to (B2) and (A1) of Corollary 7 and

show the detuning, in the technological terminology, due to G(z1; d1). From T = 4qrd/(p1p2) and

putting T/2 = T1N with an integer N , we have

(z1)
T/2 = {(z1)

T1}N ≡ 1 mod (d1).

Thus, −1 does not arise in G(z; d), and (A1) of Corollary 7 ensures G(zj ; d) to be devoid of −1 for

any index j < min(q, r). Thus Tu
(j) = T (j) holds, and all orders or periods of cyclic sequences in

List 3A are usable. We conclude the following for the efficiency τ .

(2A1) For rows with odd j: τ = T/d ≈ 1/2.

(2A2) For rows of even j not divisible by 4: τ = (T/2)/d ≈ 1/4.

(2A3) For rows with j divisible by 4: τ = (T/4)/d ≈ 1/8.

These complete the proof of List 3A.

Consider now the remaining case that the submultiplier for the submodulus d1 in the design (2f) is

a negative of a primitive root. We denote the submultiplier as −z1 implying that z1 is a primitive root

modulo d1. The primitive root z1 generates the cyclic sequence

{1, z1, (z1)
2, · · · , (z1)

T1/2 ≡ −1, · · · , (z1)
T1 ≡ 1} mod (d1)

with length T1 = 2qd1/p1 consisting of all integers distinct modulo d1. In particular, integers in the

first half of the sequence {1, z1, (z1)
2, · · · , (z1)

T1/2−1} are not equivalent to ±1 modulo d1, so that

the fact that T1/2 = qd1/p1 is odd gives that (−z1)
T1/2 ≡ 1 mod (d1) occurs for the first time in the

sequence {−z1, (−z1)
2, · · · }. Thus, the order or the period of the cyclic sequence G(−z1; d1) is

T1/2 and odd, and −z1 is not a primitive root modulo d1. Yet Corollary 6 ensures that the order or

the period of G(z; d) is

(the order of z modulo d) = LCM(T1/2, T2) = LCM(qd1/p1, 4rd2/p2) = 4qrd/(p1p2).

This is identical with the case of the primitive root submultiplier, and all resulting orders of zj for

j < min(q, r) are the same likewise. And the odd order of −z1 stipulates that the cyclic subsequence

G(−z1; d1) is devoid of −1. Thus (A2) of Corollary 7 proves that all of List 3B are concerned with

the case Tu
(j) = T (j), and the efficiencies in List 3B remains identical with those of List 3A.
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6.2. The Third Invention

In the second invention noted above, the efficiency τ = (usable period)/d of the generator (d, zj)

for j ≤ min(q, r) varies from 1/2 to 1/8. This is a tame fluctuation, particularly in contrast to cases

of the modulus d = 2i to be elucidated later. In practice we shall choose a large enough d and cut the

nominal period of the generator (d, z) down to d/8 with little problem. Yet, the variation of usable

periods of z, z2, · · · might be felt a little conspicuous. After all it is unknown whether naturally and

beautifully flat usable periods of (d, z), (d, z2), · · · will contribute so as for more multipliers to have

better performances. Yet our intuition tempts us, whispering that a more flat and even usable periods

in variations of j might be better or might give more abundantly excellent multipliers. Heavy loads

of computation are in our front as spectral test search for a generator (d, z) with reliable statistics,

and we would like to exploit any devices that might lessen the toil and give successes. The following

specific form of the modulus realizes the flatness at a small expense of diminishing the largest value

of the efficiencies. It will be worth noting that inventors’ systematic efforts with time consuming

computation to find excellent generators have so far been fruitful only in this design. Though

available resources and time of inventors are too limited to claim for the outstanding generality of

this circumstance, we recommend the design as advantageous with some reliable assurances.

The relevant generator design is characterized by 7 conditions (3a) to (3g) listed below.

(3a) The modulus d is a product of two coporime factors d = d1d2, where d1 and d2 will

again be called submoduluses.

(3b) The submodulus d1 = (p1)
i1 is a power of an odd prime p1 to an integral index i1 ≥ 1,

where p1 has the form p1 = 2q1 + 1 with another odd prime q1.

(3c) The submodulus d2 = (p2)
i2 is a power of an odd prime p2 to an integral index i2 ≥ 1,

where p2 has the form p2 = 2q2 + 1 with another odd prime q2.

(3d) Odd primes p1, p2, q1, q2 are all distinct.

(3e) The multiplier z is defined by the system of congruential equations,

z ≡ zk mod (dk), k = 1, 2,

where z1 and z2 will be called submultipliers.

(3f) The submultiplier z1 is either a primitive root, or the negative of a primitive root,

of the submodulus d1.

(3g) The submultiplier z2 is either a primitive root, or the negative of a primitive root, of

the submodulus d2.

Resultant performances of the generator (d, z) are summarized in List 4A to List 4C below. We
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prove them one by one, showing the merit of noted designs.

List 4A For both of k = 1 and 2 zk is primitive modulo dk with the order 2qkdk/pk

The LCM order of Is the cyclic sequence Approximate
zj

z′ := zj modulo d of z′ inclusive of −1? τ
z 2q1q2d1d2/(p1p2) yes 1/4
z2 q1q2d1d2/(p1p2) no 1/4
z3 2q1q2d1d2/(p1p2) yes 1/4
z4 q1q2d1d2/(p1p2) no 1/4
z5 2q1q2d1d2/(p1p2) yes 1/4
z6 q1q2d1d2/(p1p2) no 1/4
z7 2q1q2d1d2/(p1p2) yes 1/4
z8 q1q2d1d2/(p1p2) no 1/4

List 4B Case of a primitive root and a negative of primitive root

The LCM order of Is the cyclic sequence Approximate
zj

z′ := zj modulo d of z′ inclusive of −1? τ
z 2q1q2d1d2/(p1p2) no 1/2
z2 q1q2d1d2/(p1p2) no 1/4
z3 2q1q2d1d2/(p1p2) no 1/2
z4 q1q2d1d2/(p1p2) no 1/4
z5 2q1q2d1d2/(p1p2) no 1/2
z6 q1q2d1d2/(p1p2) no 1/4
z7 2q1q2d1d2/(p1p2) no 1/2
z8 q1q2d1d2/(p1p2) no 1/4

List 4C Both of multipliers are negatives of primitive roots

The LCM order of Is the cyclic sequence Approximate
zj

z′ := zj modulo d of z′ inclusive of −1? τ
z q1q2d1d2/(p1p2) no 1/4
z2 q1q2d1d2/(p1p2) no 1/4
z3 q1q2d1d2/(p1p2) no 1/4
z4 q1q2d1d2/(p1p2) no 1/4
z5 q1q2d1d2/(p1p2) no 1/4
z6 q1q2d1d2/(p1p2) no 1/4
z7 q1q2d1d2/(p1p2) no 1/4
z8 q1q2d1d2/(p1p2) no 1/4

First, List 4A takes primitive root submultipliers z1 and z2 in (3f) and (3g). Subgenerators (dk, zk)

for k = 1, 2 have even orders

Tk := ϕ(dk) = (pk)
ik−1(pk − 1) = 2qkdk/pk, k = 1, 2,
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and realize (zk)
Tk/2 ≡ −1 mod (dk) in their midways. Also, Corollary 5 proves the order T of

G(z; d) as

T := LCM(T1, T2) = LCM(2q1d1/p1, 2q2d2/p2) = 2q1q2d/(p1p2).

The order T (j), with j taken among one of 1, 2, · · · , of the cyclic sequence G(zj ; d) is now classified

into two kinds (3Ao) and (3Ae) by Corollary 6:

(3Ao) Case of odd j < min(q1, q2): T (j) = T = T1(T2/2) = (T1/2)T2 = (even),

(3Ae) Case of even j < min(q1, q2): T (j) = T/2 = q1q2d/(p1p2) = (odd).

Thus, an even j gives an odd T (j), and the cyclic sequence G(zj ; d) does not include −1 by (A2) of

Corollary 7. There holds Tu
(j) = T (j), and we have the proof of even j rows of List 4A:

(the efficiency τ for any even j) = T (j)/d ≈ 1/4.

In contrast an odd j gives an even T (j). We need {(zk)
j}T (j)/2 mod (dk) to be examined for both

of k = 1, 2, with T (j)/2 = T/2 = (T1/2)(T2/2) now beng a product of odd integers. This implies

{(zk)
j}T/2 = {[(zk)

j]Tk/2}(an odd integer)

= {(zk)
Tk/2}j×(an odd integer)

≡ (−1)(an odd integer) ≡ −1 mod (dk),

irrespective of k = 1, 2. For z′ := (zk)
j with an odd j, we thus have that cyclic subsequences

G((z′)m; dk) ≡ {(z′)m−1 mod (dk)| m = 1, 2, · · · }

for k = 1, 2 are both equivalent in tune to −1 mod (dk) at m = T/2. By (B2) of Corollary 7 there

holds (zj)T/2 ≡ −1 mod (d). The usable period is Tu
(j) = T (j)/2 = T/2 for G(zj ; d), and the

efficiency is τ = (T/2)/d ≈ 1/4. Proofs of odd j rows or the whole of List 4A is completed.

Consider now the case that one of submultipliers, which we take without loss of generality to be

the first and denote −z1, is the negative of a primitive root z1 of d1, while the other is the primitive

root z2 of d2. Results of this case shown in List 4B are to be proved. The cyclic subsequence

G(−z1; d1) has the order T1
′ := T1/2 = q1d1/p1 which is odd. Therefore, (A2) of Corollary 7

approves that G(zj ; d) is devoid of −1 for any j = 1, 2, · · · and the whole of orders of G(zj ; d) is

usable. The order of G(z; d) is

(the order of z) = LCM(T1
′, T2) = LCM(q1d1/p1, 2q2d2/p2) = 2q1q2d/(p1p2) = T.

This is identical with the order T of the preceding case List 4A that both of submultipliers are

primitive roots. Hence all cyclic sequences G(zj ; d) for integral index j < min(q1, q2) have the

identical orders as before. Analyses prove the orders T (j) as follows;
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odd j < min(q1, q2): T (j) = T = T1(T2/2) = (T1/2)T2,

even j < min(q1, q2): T (j) = T/2 = (T1/2)(T2/2).

The difference to the preceding case of List 4A is that, irrespective of whether j is even or odd, the

whole of these orders are usable by the absence of −1. The efficiencies are thus concluded as

oddj : τ = T/d ≈ 1/2, even j : τ = (T/2)/d ≈ 1/4,

which are all to be proved for List 4B.

Take finally the third case that both of submultipliers are negatives, −z1 and −z2, of primitive

roots. Subgenerators (d1,−z1) and (d2,−z2) have respective orders T1
′ and T2

′:

T1
′ = T1/2 = q1d1/p1, T2

′ = T2/2 = q2d2/p2.

The period T ′ of the synthesized cyclic sequence G(z; d) is given by

T ′ := LCM(T1
′, T2

′) = LCM(q1d1/p1, q2d2/p2) = q1q2d/(p1p2) = T/2.

This is odd. The cyclic sequence G(zj ; d) with j < min(q1, q2) has one and the the same odd order

T ′/GCD(j, T ′) = T ′. From this, or by any of (A1), (A2) or (B1) of Corollary 7, all relevant

generators lack −1 in their cyclic sequences, and the efficiency τ is unified to

τ = T ′/d = q1q2/(p1p2) ≈ 1/4.

These prove all of List 4C. �

7. Actual Procedures of Invented Second Degree Spectral Tests

Before the closing, we present some subtle details arising in problems of spectral tests. We limit

arguments to the realization of inventions 1-3, namely to the 2nd degree spectral tests. This

limitation is somewhat inappropriate deplorably, but we put a greater importance to the visibility of

the geometry of the Euclidean plane E2.

Consecutive 2-tuples of points {(nzk, nzk+1) = nzk(1, z)| k = 0, 1, 2, · · · } and their modulo d

equivalents emitted from the generator (d, z) were seen in Sec. 4 to be in a lattice G := G(e1, e2)

spanned by basis vectors {e1 = (1, z), e2 = (0, d)}. We take a slight generalization, and consider a

lattice G′ := G′(e1
′, e2

′) spanned by basis vectors {e1
′, e2

′} in the Euclidean plane E2 by their

integral linear combinations,

G′ = G′(e1
′, e2

′) = {c1e1
′ + c2e2

′| (c1, c2 are integers)}.

Readers are referred to any plot in Figure 1 as the visual image of such a lattice.
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We first note a general way to take the basis vectors on a given lattice G′. Let an arbitrary lattice

point be P . Draw a line L′, to be called a lattice line, connecting P to any other lattice point Q.

Among infinite number of lattice points on L′, points P, Q are assumed to be neighboring. Draw

other lattice line L′′ which is parallel and neighboring to L′ without any other parallel lattice lines in

between. Choose an arbitrary lattice point R on L′′. Then vectors

e1
′ :=

−→
PQ, e2

′ :=
−→
PR

are a set of basis vectors of the lattice G′:

Corollary 8. Any vectors {e1
′, e2

′} constructed by the noted way are basis vectors of an arbitrary

lattice G′ in E2. They span a parallelogram of one and the same area. Any set of basis vectors of G′

are linear transformations of others by unimodular integer matrices.8

(Proof) We may translate the parallelogram, formed by vectors {e1
′, e2

′} constructed in noted

procedures, along its two sides (lattice lines), let its one vertex P itinerate every lattice point of G′,

and let its area tile the plane E2 completely without any opening or overlap. Therefore, {e1
′, e2

′} is a

set of basis vectors of the lattice G′. The same performance is realized by any choice of different

basis vectors {e1
′′, e2

′′} with a different shape constructed in the noted way, if their parallelogram

has the same area associated with every lattice point. All set of basis vectors of G′ are constructed in

this way, and the way exhausts the choice of basis vectors of G′. Any other basis vectors {e1
′′, e2

′′}
are integral linear combinations of {e1

′, e2
′}, so that the matrix M ′′ formed by {e1

′′, e2
′′} has the

relation M ′′ = M ′U to the matrix M ′ formed by {e1
′, e2

′} by a matrix U with integer components.

Since determinants of both sides should agree except for the sign, we have det U = ±1, namely U

should be a unimodular matrix with a unimodular inverse. �
We now have the perspective of general circumstances.

Corollary 9. Let there be given an arbitrary lattice G′ = G′(e1
′, e2

′) in the Euclidean plane E2.

Name the triangle spanned by any set of basis vectors {e1
′, e2

′} as a 2-simplex. Denote λ
′
for the

largest distance between parallel neighboring lattice lines in G′. There holds

λ
′
= sup

all 2-simplexes of G′
(the largest vertex height from the base line in a 2-simplex).

(Proof) By the construction of basis vectors of a lattice G′, the distance λ′ of any set of parallel

neighboring lattice lines is the height of a vertex P of some 2-simplex to the baseline facing P .

Conversely, any height of any vertex in an arbitrary 2-simplex is the distance of some neighboring

parallel lattice lines. Therefore, λ′ is given as the supremum over all 2-simplexes in G′. �

8A square martix U is unimodular if U consists of integers components and if det U = ±1 holds true. Then inverse
matrix U−1 is also unimodular, manifestly.
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We now have:

Corollary 10. As to the distribution of points of the lattice G = G(e1, e2) for the 2nd degree

spectral tests of the (d, z) there hold the following.

(A) The ideal geometrical form of the lattice G, for the statistical inference that the generator (d, z)

gives uniform and independent random numbers, is given by the triangular lattice constructed with

regular 2-simplexes with the largest distance λ
(2)

d := 21/23−1/4d1/2 between parallel and neighboring

lattice lines.

(B) The lattice G = G(e1, e2), that provides seats to 2-tuples of random numbers emitted from

(d, z), has the largest distance λ = λ
(2)
d (z) between its parallel and neighboring lattice lines, with λ

bounded from below as follows:

λ = λ
(2)
d (z) > λ

(2)

d = 21/23−1/4d1/2 ≈ 1.07456993d1/2.

(Proof) (A) The configuration of seats as a triangular lattice certainly give least reasons to negate

the statistical hypothesis that consecutive 2-tuples from the generator do not have the uniformity or

the independence. Drawing pictures of a regular triangle of the area d/2, we at once have the value

of λ
(2)

d with the trigonometric calculus, say.

(B) Take a triangle of a fixed area d/2 and its any edge with length a. Let the edge face the vertex

with the height h. By ah = d, the shortest edge corresponds to the largest height h in the triangle. If

the triangle is not regular, its shortest edge length a should satisfy a < a for the edge length a of the

regular triangle. Thus, h = d/a ≥ d/a =: h holds true for the height h = λ
(2)

d of the regular triangle

by (A). Since the lattice G(e1, e2) cannot have irrational coordinates for its lattice points, the

equality never arises. �
In order to perform actual computations of 2nd degree spectral tests, we had better be transferred

to the dual lattice. We discuss with general lattices.

Corollary 11. Take the lattice G′ = G′(e1
′, e2

′) in E2 defined by any set of linearly independent

basis vectors {e1
′, e2

′}. Define the dual basis vectors f 1
′, f 2

′ by inner products

(ej
′, f k

′) = δjk.

Name the lattice spanned by dual basis vectors {f 1
′, f2

′} as the dual lattice G′∗ of G′, with its any

set of (dual) basis vectors being constructed operationally in the same way as in G′. Any set of basis

vectors {e1
′, e2

′} of G′ corresponds to a unique set of dual basis vectors {f 1
′, f 2

′} of G′∗, and

conversely any set of dual basis vectors {f 1
′, f2

′} of G′∗ corresponds to a unique set of basis vectors

{e1
′, e2

′} of G′.

(Proof) Denote by M ′ the 2 × 2 matrix formed by row vectors e1
′, e2

′. The set of inner products is

identical with the matrix equation M ′ t{(M ′)∗} = I , where (M ′)∗ is the 2 × 2 matrix formed by row
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vectors f 1
′, f 2

′, the matrix t{(M ′)∗} is the transpose of (M ′)∗, and I is the 2 × 2 unit matrix.

Therefore, (M ′)∗ is well-defined and unique once M ′ is given. Their correspondence is manifestly

invertible, as well as one-to-one and onto:

M ′∗ = t{(M ′)−1}, M ′ = t{(M ′∗)−1}. �

The aim of this subsection is to state the following relation.

Theorem 12. Take any lattice G′ in E2 defined by any given set of linearly independent basis

vectors {e1
′, e2

′}. Denote λ for the largest distance of the two neighboring lattice lines in G′. This

largest distance is given by the smallest, non-zero vector fmin
′ of the dual lattice as

λ = 1/‖fmin
′‖,

where ‖fmin
′‖ is the Euclidean length of fmin

′.

(Proof) Let any 2-simplex of the lattice G′ in E2 be denoted as the triangle �PQR. The choice of

names of vertices is irrelevant, so that we take Q facing the base line RP and evaluate the height λ′

of Q. We may choose e1
′ :=

−→
PQ and e2

′ :=
−→
PR as the basis vectors and define the dual basis

vectors f 1
′, f 2

′ which are determined uniquely by basis vectors. Since f 1
′ is orthogonal to the base

line e2
′ = −−→

RP , the height is given as

λ′ = |(e1
′, f 1

′)|/‖f 1
′‖ = 1/‖f 1

′‖.

The smallest of this value over all set of basis vectors is the same as the smallest taken over all dual

vectors, and the proof is complete. �
Theorem 12 transposes the search for the largest spacing of parallel adjacent lattice lines in E2 to

the search of the shortest non-zero vector of dual lattice. To this latter end it is advisable to first

represent dual lattice vectors by integers only; this enables us to execute the work in the error-free

integer arithmetic for any length of computing time. This is at once in spectral tests. Corresponding

to the basis vectors e1 = (1, z) and e2 = (0, d), we may define:

f1 = (d, 0), f 2 = (−z, 1).

The following inner products are obviou:

(ej, fk) = dδjk, 1 ≤ j, k ≤ 2.

These are readily assembled into Theorem 12. Let F ∗ denote the 2 × 2 matrix formed by these

integer row vectors {f 1, f 2}. Inner product relations are the same as follows:

M tF ∗ = dI, F ∗ = d tM−1 = dM∗.
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Therefore, we have f j
′ = f j/d for j = 1, 2, and

λ = d/‖fmin‖,

with the integer shortest vector fmin in the dual lattice G∗ := G(f1, f2).

Now that the problem is reduced to the search of the shortest integer dual lattice vector fmin in the

dual lattice, we may profitably take dual vectors in cartesian coordinates f = (j1, j2) with integers

j1, j2. We have:

Corollary 13. The necessary and sufficient condition, for the integer vector f = (j1, j2) to be in

the 2-dimensional dual lattice G∗ of the (d, z) generator, is the following:

j1 + zj2 ≡ 0 mod (d).

(Proof) If f = (j1, j2) is in the dual lattice G∗, integers m1, m2 exist and give f = m1f 1 + m2f2

or j1 = dm1 − zm2 and j2 = m2. Therefore, j1 + zj2 = dm1 ≡ 0 mod (d) holds true and the

condition is necessary. Conversely, if the condition is satisfied, an integer k exists and gives

j1 + zj2 = kd, or

f = (j1, j2) = (kd − zj2, j2) = kf 1 + j2f 2.

Thus f is in the dual lattice G∗, and the condition is also sufficient. �
There is a final clue for the 2nd degree spectral tests that facilitates the search of the shortest dual

lattice vector fmin in E2. Namely, the length of this shortest vector has a geometrical upper bound.

Corollary 14. The largest distance λ
(2)
d (z) of the parallel, adjacent lattice lines in the lattice in E2

given by the generator (d, z) has the geometrical lower bound λ
(2)

d ,

λ
(2)
d (z) = d/‖fmin‖ > λ

(2)

d := 2−1/231/4d−1/2,

which equivalently implies that the shortest dual lattice vector fmin of the (d, z) generator has the

following geometrical upper bound:

‖fmin‖ < 21/23−1/4d1/2 ≈ 1.07456993d1/2.

(Proof) We prove directly the more exotic upper bound of ‖fmin‖. Triangles or 2-simplexes

spanned by lattice basis vectors have one and the same area d/2. Any dual basis vectors also span a

lattice named dual lattice, so that by the relation of matrices M and F (or by an explicit form of F )

F should also span the parallelogram of area d, or the 2-simplex of area d/2. Under this restriction

of a fixed area d/2 triangles can have the smallest edge that should not exceed the case of a regular

triangle, ‖fmin‖ ≤ 21/23−1/4d1/2. Since a regular triangle of area d/2 necessarily have irrational
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coordinates, the 2-simplexes of the dual lattice cannot reproduce the equality in this relation by their

integral coordinates. �
Existence of this geometrical restriction is an evidence that (2nd degree) spectral tests of (d, z) are

not too much vicious as a shortest vector problem. Let λ
(2)
d (z) denote the largest distance λ of

parallel, adjacent lattice lines in the lattice spanned by 2-tuples emitted from the (d, z) generator.

The aim of the 2nd degree spectral tests is to find (d, z) such that the following valuation,

ρ = ρ
(2)
d (z) := λ

(2)
d (z)/λ

(2)

d = d/(‖fmin‖λ(2)

d ) = 21/23−1/4d1/2/‖fmin‖,

is not much apart from the lower limit 1, even though ρ is destined to be larger than 1. The

passability criterion of (d, z) is usually taken as ρ < 1.25 after Fishman and Moore (1986). We are

now able to explain how to carry out this second degree tests. First, give candidates for modulus d

and multiplier z. Then fix the desired range of ρ, usually 1 < ρ < 1.25. Let the integer j2 sweep in

the range |j2| < 21/23−1/4d1/2, compute j1 ≡ −zj2 mod (d), and evaluate

21/23−1/4d1/2/{j1
2 + j2

2}1/2.

The smallest value of this quantity is the 2nd degree valuation ρ
(2)
d (z) of the generator (d, z). We

should repeat tests taking different multiplier z and different modulus d until we find a generator

with satisfactory performance. We need the strategy, the conviction and the patience.

In the passing, we would like to add the following. All geometrical arguments noted above work

beautifully and we are completely in the right, thanks to the accidentally simple circumstance of

2-dimensional geometry. However, by implications of spectral tests, the way of geometrical thinking

in higher dimension requires revisions from a different standpoint. This will be discussed fully in

accounting the next invention. There we shall see some seemingly small revisions will reward us

with impressive technological successes in the accurate generation of uniform and independent

random numbers.

8. Two Concluding Remarks

8.1. Computational Procedures with Moduluses Formed by Two Odd-Prime-Factors

Any design of a multiplicative congruential generator (d, z) starts from the choice of the modulus

d. Putting aside the overview provided by the arithmetic structure, that any finite sequence of

uniformly bound integers may be approximated by a multiplicative congruential sequence, we were

motivated strongly by the conviction of the utility of shuffling structures in Sun Tzu’s theorem. The

simple-minded first direction was to look for generators with the largest efficiency

τ := (the usable period T ′)/d ≈ 1/2.
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More recent realization of ours, that 2nd degree spectral test performances of generators (d, zk) for

k ≥ 2 are vital, reformed us to look into securing flat structures of periods for these constructed

generators. The 2nd and the 3rd inventions are now believed to be the most adequate structures to

this end. But we do not have resources to chase after two hares. Up to the present we have been

working only with the 3rd invention of the modulus d constructed as

d = p1p2, p1 = 2q1 + 1, p2 = 2q2 + 1,

with distinct odd primes p1, q1, p2, q2. Our guess is that the form d = p1
i1p2

i2 with indices i1, i2 ≥ 1,

as well as the 2nd invention with the modulus

d = p1
i1p2

i2 , p1 = 2q + 1, p2 = 4r + 1.

with distinct odd primes p1, q, p2, r, will likewise be fruitful candidates. Yet, we cannot have general

perspectives or good results for all of these. We therefore concentrate on the special case of the 3rd

invention with the simple product d = p1p2 and primes q1, q2 for pk = 2qk + 1, k = 1, 2.

The merit and the advantage of this design will be accounted for most clearly by describing the

explicit procedures adopted in successful search processes.

(1) Fix the starting prime p1 and the final prime p1, and design the computation so as to proceed by

increasing p2 to p2 + 2 step by step up to p1, checking that p1, q1, p2, q2 are primes.

(2) For a d1 = p1 take 2 as the smallest primitive root or its negative, and proceed on the 2nd

spectral test of (p1, z
k) with k increased consecutively as k = 1, 3, 5, · · · , say up to k = 12.

(3) Proceed similarly with d2 = p2.

(4) We then take two lists of passers, a passer (p1, z1) and a passer (p2, z2), combine them by Sun

Tzu’s theorem to a generator (d = p1p2, z) and perform its 2nd stage spectral tests, namely 2nd

degree tests of (d, zk) for k = 1, 2, · · · , 6 and 3rd to 6th tests of (d, z), say.

We have no computing time to try on d = p1
i1p2

i2 , and the circumstances are completely open to

our knowledge. There may be devised different ways to prepare passers (p1, z1) and (p2, z2); for

example we may perform spectral tests of 3rd to 6th degrees on (p1, z1) to lessen the passers, and

likewise for (p2, z2). This is in a sense dangerous as tactics, because there may be and in fact there

were synthesized passers whose component subgenerators did not pass their respective 3rd to 6th

degree spectral tests. But the diminished number of candidates may give a shorter time in finding a

good passer. Many devices, conspiracies and arts will be needed to avoid unnecessary computations,

but with care.

Readers are asked not to undertake these procedures at this place. This is because spectral tests of

3rd to 6th degrees require revisions, without which the success will be hard to be attained. The
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subject will be accounted for fully in the next report on the 2nd invention now under submission to

Patent Offices of Nations.

8.2. Moduluses Including Powers of 2

The design of the modulus d with two odd prime factors was seen to have various excellent

features. Its merits may be grasped in engineering terms as realizing the shuffling of two

subgenerators which, as a machine with two motors with respective periods, can be designed to

realize detuning that expels dangerous resonance and, with excellently polished submotors, may

realize a smoother and excellent total system. Above all, the design will be the sole way to get rid of

problems of computability and to equip contemporary fast computers with tested generators of

sufficiently long periods.

Multiplicative congruential generators for uniform and independent random numbers have another

influential design that adopts the power of the prime 2 as the modulus, d = 2i. A simple condition

z ≡ 5 mod (8) ensures the largest possible period T = 2i−2 = d/4 in this case, and the whole of this

T is usable by the absence of −1 in the sequence if only the initial value n is chosen so as to satisfy

n ≡ 1 or 5 mod (8).9 In an epoch making work Fishman (1990)10 conducted spectral tests adopting

the modulus d = 232 and exhausting all possible multipliers z ≡ 5 mod (8). He also presented

examinations of a portion of multipliers for d = 248; computational difficulties prevented him to

perform exhaustive tests in the latter case. Thus, from the start the modulus d = 2i has carried

difficult problems of computability. Nakazawa and Nakazawa (2008)11 showed that the problem

cannot be resolved by taking composite moduluses in this case. If a power of 2 enters a modulus d as

a factor in the product with odd primes or odd-prime-powers, it inevitably introduces correlations

among powers of submultipliers for odd primes, and the resultant random numbers cannot be taken

as independent. This flaw is vicious in the sense that it cannot be detected by spectral tests. Stated

differently, the modulus d = 2i should be used standing alone if at all, for any multiplicative

congruential generator and severe difficulties of computation in exhaustive spectral tests have no

way to be alleviated from the status met in Fishman (1990). We note here another problem with this

type of moduluses.

Suppose we have a generator (d, z) with d = 2i and z ≡ 5 mod (8). We saw that (d, zk) for

k = 2, 3, · · · should also be good random number generators. However, difficulties seem to arise

9This is because 5j ≡ 1 or 5 ≡ −3 mod (8) holds true for any j = 1, 2, · · · .
10Fishman (1990): G. S. Fishman, Multiplicative congruential random number generators with modulus 2β: An ex-

haustive analysis for β = 32 and a partial analysis for β = 48. Mathematics of Computation, Vol. 54 (1990), pp.331-344.
11Nakazawa and Nakazawa (2008): H. Nakazawa and N. Nakazawa, Designs of uniform and independent random

numbers with long period and high precision — Control of the sequential geometry through product group structures and
lattice configurations. Filename 3978erv.pdf, uploaded in http://www10.plala.or.jp/h-nkzw/ (March 9-July 8, 2008).
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with their orders, for example. Since the generator (d = 2i, z) has the order T = 2i−2, the generator

(d, zk) has the order

T ′ = T/GCD(k, T ) = T/GCD(k, 2i−2).

If the exponent k of the multiplier reaches k = 2m for m < i − 2, a sudden change of the period to

T ′ = T/2m arises, though this shorter-period sequence is wholly usable by the absence of −1 with

any multiplier z ≡ 5 mod (8). This feature looks to be unfit for generators (d = 2i, zk) with various

index k to realize evenly excellent independence as random numbers. But this is only a guess

harbored in a frightened mind that is unwilling to set out to very heavy computations of spectral tests

with uncertain prospects. The true performance of generators should be confirmed with numerical

reality, of course.
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