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Method of Spectral Tests of Multiplicative
Congruential Random Number Generators1

Naoya Nakazawa2 and Hiroshi Nakazawa3

1. Background of the Invention

1.1. Field of the Invention

Inheriting the preceding report4 to be denoted I hereafter, we extend considerations to higher

degree spectral tests. Descriptions in I were centered around periodic structures of multiplicative

congruential random number generators, handling new problems that arose with the discovery of

significant roles of a series of extended 2nd degree spectral tests. Shortly after the submission of this

invention to Patent Offices of Nations, inventors came to realize further inconsistencies in prior arts

of spectral tests with degrees l ≥ 3, in evaluating generated l-tules of consecutive random numbers

regarding their statistical uniformity and independence. Analyses lead them to the conclusion that

higher degree tests need further revisions. Devised after hard efforts on difficult problems, the

revisions gifted inventors with conspicuous successes in finding several, though not many as yet,

generators with outstanding performances with periods T ≈ 249 or larger.5

The research processes presented below are around a shortest vector problem but, as stated, with

rather comprehensive changes in its aim from the one so far adopted in the prior arts of the field. It

will be impressive to state what has come and will come to be disclosed. A decisive fact is that the

true problem was not the one aimed at in traditional art. Rather, we should look for generators (viz.

sets of integers (d, z) to produce multiplicative congruential random numbers) that realize a set of

suitable forms of integer lattices associated. The present series of inventions aimed first to find

designs of multiplicative congruential long-period generators that nevertheless give their computable

1Uploaded in http://www.nakazawa-patents.jp on June 5, 2014
2nmail@nakazawa-patents.jp
3nmail@nakazawa-patents.jp
4Nakazawa and Nakazawa (2014): Naoya Nakazawa and Hiroshi Nakazawa, Constructive design of uniform and

independent random number generators, posted April 29, 2014 in this URL http://nakazawa-patents.jp with the filename
invention1.pdf.

5The noted magnitude of the period may intuitively be understood that the fast but small desktop computer with Intel
Core (TM) i7-3930K CPU generates one random number in 10−6 sec, and the period T = 249 will be used up in 17.85
years. However, the matter changes drastically with present supercomputers. We might assume that one random number
is produced in 10 floating point operations or in about 10/1016 ≈ 2−50 sec. Thus the period T ≈ 250 will be used up
in 1 sec, if multiplicative congruential generators are run fully in parallel. This suggests that one day generation on a
supercomputer will require a multiplicative congruential generator to have desirably a period T ≈ 217 × 250 ≈ 267 or
larger.
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spectral tests. Structural analyses revealed that the design of the modulus d with factors formed by

two odd primes is the most efficient to this end. Putting aside the framework of principles that all

uniform random number sequences of any finite length T are realizable by multiplicative

congruential sequences,6 the clue to understand the noted structural excellence is in Theorem of Sun

Tzu and the intuitive invariance to be accompanied by uniform and independent random number

sequences: Roughly speaking, two uniform and independent sequences of random numbers should

be shuffled into another uniform and independent random numbers. The efforts in this instinctive

line of truth, however, were not much fruitful with the use of conventional ways of spectral tests.

Inventors may now explain why this was so. The conventional spectral tests, formulated so as to find

lattices with the smallest distances between their co-called parallel and neighboring hyperplanes,

were not statistically correct in view of their aim. The revision of this direction of tests to the right

form brought the computation on track, and salvaged excellent generators so far overlooked to their

true valuations. Since spectral tests require extremely heavy computation, this firmly established

prospect of success will be all invaluable to start with works for them.

We denote (d, z, n) for the multiplicative congruential random number generator comprising a

natural number d > 0 for the modulus, an integer z coprime with d for the multiplier, and an integer

n with the name initial value as the specifier of the starting random number. The integer n is also

called seed, and restricted to be coprime with d to avoid unnecessary complications. The generator

(d, z, n), or (d, z) if n is irrelevant to arguments, solves the recursive equivalence relations

n1 :≡ n mod (d), nk+1 :≡ znk mod (d), 0 < nk < d, k = 1, 2, · · · ,

gives the solution sequence of integers {nk ≡ nzk−1 mod (d)| 0 < nk < d, k = 1, 2, · · · }, and

emits the sequence {vk := nk/d| 0 < vk < 1, k = 1, 2, · · · } of real or rational numbers for uniform

and independent random numbers. The goal is to ascertain the precision, in the statistical sense, of

this output sequence as claimed random numbers.

1.2. Spectral Tests of General Degrees

We reflect on spectral tests again, taking the general l-th degree with l = 2, 3, · · · . For a while

integers are taken without equivalence modulo d. Tests take l-consecutive integer outputs

Qk := (nk, nk+1, · · · , nk+l−1) = nzk−1e1, e1 := (1, z, z2, · · · , zl−1), k = 1, 2, · · ·

emitted from the generator (d, z, n), regarding Qk freely as a (row position) vector or coordinates of

a point in the Euclidean space El of l-dimension. A point Qk
′ with coordinates equivalent to those of

6See I for this detail.
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Qk modulo d are obtained by d-translations along coordinate axes. Along j = 2, 3, · · · , l axes such

translations are effected respectively by adding integral multiples of vectors,

e2 := (0, d, 0, 0, · · · , 0, 0),

e3 := (0, 0, d, 0, · · · , 0, 0),

e4 := (0, 0, 0, d, · · · , 0, 0),

· · · · · · · · · · · · · · · · · ·
el−1 := (0, 0, 0, 0, · · · , d, 0),

el := (0, 0, 0, 0, · · · , 0, d).

Along the 1st axes the translation is realized by adding integral multiples of the following:

e1
′ := (d, 0, 0, 0, · · · , 0, 0) = de1 − ze2 − z2e3 − z3e4 − · · · − zl−1el.

Therefore, the points {Qk| k = 1, 2, · · · } and all of their d-equivalents are contained in the set of

vectors:

Gl := Gl(d, z) = Gl(e1, e2, · · · , el)

:= {c1e1 + c2e2 + · · · + clel| c1, c2, · · · , cl are integers}.
This set Gl defines the lattice spanned by basis vectors or bases {e1, e2, · · · , el} in the l-dimensional

Euclidean space El. These basis vectors are linearly independent with their determinant dl−1 �= 0,

which represents the volume of the parallelepiped spanned by them.

Let Cd denote a hypercube in El with its sides [0, d) along axes. Denote Qk
′ for the point in Cd

equivalent to Qk modulo d. Supplied from the process of generating l-tuples of random numbers, the

points Qk
′ for k = 1, 2, · · · occupy their seats consecutively on lattice points in the hypercube Cd.

Since these points of random numbers are restricted to have only integer coordinates coprime with d,

they cannot occupy all of the d lattice points7 in Cd. In one period of the generator (d, z, n) l-tuples

of random numbers can occupy at most d − 1 of these lattice points, as the example of an odd prime

d = p and its primitive root z with the order ϕ(p) = p − 1 readily convinces us. See I and the

references cited therein for details of these periodic structures.

The l-th degree spectral tests have little concern with noted processes of seat-taking by (d, z)

outputs, and concentrate on the valuation of the geometrical distribution of seats prepared by the

lattice Gl in El, estimating whether the configuration is adequate as seats for l-tuples of random

numbers emitted from a uniform and independent random number generator. The meaning of this

7The total number of lattice points in Cd is d for any dimension l, because the first coordinate c1 of the lattice point

c1e1 + c2e2 + · · · + clel = (c1, c1z + c2d, c1z
2 + c3d, · · · , c1z

l−1 + cld)

gives d distinct integer values of the 1st coordinate 0 ≤ c1 < d in Cd, while the j-th coordinate 0 ≤ c1z
j−1 + cjd < d

selects the integer cj uniquely without freedom for any j = 2, 3, · · · , l.
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statement will be grasped most clearly by visual experiences. See Figure 1 posted below in two

Figure 1 Geometry of 2-tuples of random numbers and spectral test valuation ρ

ρ = 1.0503 (257, 27) ρ = 1.0983 (283, 83)

ρ = 1.1459 (317, 245) ρ = 1.1982 (281, 266)

ρ = 1.2491 (277, 20) ρ = 1.3012 (283, 113)
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ρ = 1.3501 (311, 297) ρ = 1.3947 (251, 76)

ρ = 1.4547 (251, 46) ρ = 1.4959 (281, 117)

ρ = 1.9915 (419, 381) ρ = 2.7283 (419, 262)

pages.8 They show final states of occupation of seats on respective lattices. As each of Fig. 1 is

8The illustrations have been posted in I. Readers are asked to be patient with this duplication, in view of the significance
of this visual comprehension.
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plotted by taking points {Qk := (nk, nk+1)| k = 1, 2, · · · } in the time order of emission, readers

may see the motion picture of noted seat-taking processes if these plots are reproduced sufficiently

slowly by reading softwares. Values of (d, z) are chosen small in order to make plots decipherable to

our eyes. Points are in the square Cd. Outer square frames are drawn slightly larger so as to include

Cd inside.

Plots at the start show neat arrays of emitted points close to the so-called triangular lattice formed

by regular triangles. If consecutive 2-tuples of random numbers take seats in these neatly distributed

positions in, hopefully, some randomly looking manner, we have few reasons to deny the statistical

hypothesis that consecutive 2-tuples of random numbers appear uniformly with independence. On

the contrary, we see at the end of Figure 1 such distributions of lattice points that appear to be

packed into a few distinct lines with conspicuously large separations between them. If points of

2-tuples appear on seats arranged in this manner, we shall find strong direction-dependence of their

distribution and will be suggested that consecutive random number pairs appear correlated with

dubious independence. Spectral tests give a number ρ = ρ
(2)
d (z) > 1 as the quantitative valuation of

these impressions to the (d, z) generator; see Figure 1 with ρ noted for G2(d, z) lattices with the

understanding that ρ closer to 1 from above is better.

2. Basis Vectors of Lattices

Arguments on lattices will be started with a restrictive but explicit definition by vectors in the

Euclidean space El, and with another general but abstract definition. A lattice to be discussed is a set

of row vectors in El which are formed as integral linear combinations of a given set of l linearly

independent basis vectors. These basis vectors and their (integral) linear combinations are identified

at places with position vectors, with points or with the set of coordinates in El, if explicit pictures

clarify circumstances better and facilitate our intuitive, geometrical thinking.

A more general but abstract definition is given in terms of groups. A discrete set G will be said to

form a lattice if the operation of addition is defined between any elements a, b, c of G fulfilling the

following 4 axioms.

0) Any two elements a, b ∈ G may be added to give another in G, a + b = b + a ∈ G.

1) The addition is associative, (a + b) + c = a + (b + c).

2) There exists an element 0 ∈ G that gives a + 0 = a.

3) For any a ∈ G there exists an element −a ∈ G that gives a + (−a) = 0.

It is obvious that the lattice defined by basis vectors satisfies these 4 axioms. We shall mainly

proceed with the first explicit image of the lattice.

The parallelepiped formed by lattice basis vectors is fundamental in our arguments. Since the
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choice of basis vectors is not unique, the parallelopiped is also non-unique, particularly in its shape.

The following comprehension is convenient in dealing with this circumstance.

Corollary 1. Let G be a given lattice in the Euclidean space El. A set S of lattice vectors will be

called basal, if the parallelepiped spanned by the set has a non-vanishing volume and contains no

lattice point inside nor on surfaces (including edges) except for the vertices.

(A) Consider a set S consisting of l lattice vectors of G. The vectors in S form the basis of G if

and only if they are basal. Any set of basis vectors of G, or equivalently any basal set of l lattice

vectors of G, spans one and the same non-zero volume.

(B) Take two basal sets of row lattice vectors {e1, e2, · · · , el} and {e1
′, e2

′, · · · , el
′} and form

respective l × l matrices M and M ′. They are linear transformations M ′ = UM and M = U−1M ′ of

each other by a unimodular matrix U and its inverse, where a unimodular matrix U is an l × l matrix

formed by integer components with det U = ±1.

(C) Let M be the matrix formed by an arbitrary basal set of row lattice vectors of G and U be an

arbitrary unimodular matrix. Then the matrix M ′ = UM has its row vectors which form a basal set

of basis vectors of G.

(Proof) (A) Let a basal set S of lattice vectors be given with its parallelepiped V . Assume that V

has a volume v > 0 implying the linear independence of basal vectors. Name a vertex of V as Q.

Any parallelepiped is space-filling by geometry. Translations of points of V , realized by adding an

arbitrary lattice vector a, let the vertex Q visit all lattice points of G. In the while V tiles the space

without overlap nor opening, because the inside and surfaces of V are not lattice points excepting

vertices. Thus, the set S consists of basis vectors of G. Properties of the volume v is manifest.9 The

converse statement, that a set of basis vectors form a basal set, will be obvious.

(B) The set of basis vectors {e1
′, e2

′, · · · , el
′} consists of lattice vectors, and are represented by the

original basis vectors {e1, e2, · · · , el} by integral linear combinations. Interrelations are written

compactly in the matrix forms M ′ = UM , with an integer matrix U . Assertion (A) demands that

determinants of M and M ′ are ±v, so that | det M ′| = | detU | · | det M | or | detU | = 1 holds true.

This stipulates det U = ±1. Thus, the matrix U is unimodular with a unimodular inverse.

(C) A unimodular transformation by a matrix U is a linear transformation, and maps a line of El to

a unique line, a lattice point to a unique lattice point, and the point at infinity to the point at infinity.

Let a basal set of basis vectors span a parallelepiped V . The unimodular matrix U transforms V to a

parallelepiped V ′ spanned by row vectors of the matrix M ′, and transforms the inside, the surfaces

or the edges of V to those of V ′ by this topology. Therefore, the appearance of a lattice point inside,

9We may of course argue as follows. Take a sphere of radius R with the center at Q, denote its volume as vR and
assume the number of lattice points in the sphere to be nR. The convergence limR→∞ vR/nR =: v is readily seen. This
v is the one and the same volume of the parallelepiped.
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on the surface or on edges excepting vertices, of V ′ is a contradiction and false. Thus M ′ = UM

consists of a basal set of row vectors, with its manifest converse. The assertion (C) is true. �
Conveniences given by unimodular transformations as stated in (C) are invaluable. Experiences of

their power will be met soon below.

3. Parallel Adjacent Lattice Hyperplanes and Simplexes

Take the case of our space E3 with l = 3 for intuitiveness and visual clarity. Assume that a lattice

G is given in E3 spanned by a basal set of lattice vectors {−−−→Q0Q1,
−−−→
Q0Q2,

−−−→
Q0Q3} which by definition

are linearly independent and form a set of basis vectors of G. Denote v > 0 for the volume of the

parallelepiped spanned by them.

For later continuity of notations, we note here that vectors {a :=
−−−→
Q1Q2, b :=

−−−→
Q1Q3, c :=

−−−→
Q0Q1}

also form a basal set, because the inverse transformation
−−−→
Q0Q1 = c,

−−−→
Q0Q2 = a + c,

−−−→
Q0Q3 = b + c

is unimodular with the determinant −1. Therefore, the plane spanned by a and b is a side surface of

a parallelepiped10 spanned by {a, b, c}. Take a 2-dimensional plane Π including this side surface

plane spanned by a and b. Consider the lattice G as a set of lattice points, define GΠ := G ∩ Π as a

set of points. The set of position vectors on GΠ is a subgroup of G, and the set {a, b} is a basal set

of vectors in GΠ, because otherwise the original {a, b, c} cannot be basal in G.

We name the plane Π as an l − 1 = 2-dimensional lattice plane of the latice G. This plane may be

translated to the neighboring parallel plane Π′ in E3 by adding the vector −c =
−−−→
Q1Q0. This Π′ is the

opposite surface of the parallelepiped spanned by {a, b, c}; Π′ may also be said as a 2-dimensional

lattice plane that passes through Q0. There can exist no lattice points of G between Π and Π′. We

rephrase that Π and Π′ are l − 1 = 2-dimensional parallel and neighboring lattice planes.11

These 3-dimensional preliminary arguments give us almost the whole of structures arising in the

general dimension l ≥ 2 with spectral tests. We evade brain-twisting geometrical images of higher

dimensions, and set out directly to summarize relevant results. Assume that a lattice G is given in El

with a basal set of l basis vectors {−−−→Q1Q2,
−−−→
Q1Q3, · · · ,

−−→
Q1Ql,

−−−→
Q1Q0}. The l − 1 basis vectors {−−−→Q1Q2,

−−−→
Q1Q3, · · · ,

−−→
Q1Ql} span an (l − 1)-dimensional hyperplane Π, which includes a side surface (or

rather, an l − 1 dimensional hyperplane) of a lattice parallelepiped or a unit cell of (another) basal

set of lattice vectors. Its intersection with the lattice G gives the (l − 1)-dimensional sublattice Gl−1

of G including l points {Q1, Q2, · · · , Ql}. The parallel translation of Πl−1 by the vector −−−−→
Q0Q1

gives one more of hyperplane sublattice Π′
l−1 which is parallel and adjacent to Πl−1. Finally, define

10This parallelepiped is different from the one spanned by {−−−→Q0Q1,
−−−→
Q0Q2,

−−−→
Q0Q3}, but both are unit cells or building

blocks of the lattice G in the terminology of physicists, though two unit cells are distinct.
11Any two planes containing opposite surfaces of a parallelepiped spanned by arbitrary set of basis vectors are parallel

and neighboring lattice (hyper)planes of l − 1-dimension.
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the linear hull spanned by the basal set of l-vectors {−−−→Q0Q1,
−−−→
Q0Q2, · · · ,

−−→
Q0Ql} in El as

{r = c1
−−−→
Q0Q1 + c2

−−−→
Q0Q2 + · · ·+ cl

−−→
Q0Ql| cj ≥ 0, c1 + c2 + · · ·+ cl ≤ 1}

and call it the l-simplex spanned by vectors {−−−→Q0Q1,
−−−→
Q0Q2, · · · ,

−−→
Q0Ql}. We regard it also as a cone

with the vertex Q0 on the (l − 1)-dimensional base hyperplane B spanned by l − 1 vectors {−−−→Q1Q2,
−−−→
Q1Q3, · · · ,

−−→
Q1Ql}. We have now a clear overview on the distance between parallel and neighboring

(l − 1)-dimensional lattice hyperplanes Π and Π′; it is the height of the vertex Q0 in the l-simplex to

the base hyperplane B of (l − 1)-dimension. This conclusion is general.

Corollary 2. Let a lattice G of l-dimensional position vectors be given in the Euclidean space El for

l ≥ 2.

(A) The distance λ, between any pair of (l − 1)-dimensional parallel and neighboring lattice

hyperplanes, is the height of a vertex, in an l-simplex spanned by a basal set of l-lattice vectors, to its

base (l − 1)-hyperplane.

(B) Conversely, consider any l-simplex spanned by an arbitrary basal set of l lattice vectors. The

height λ of its arbitrary vertex, to the base (l − 1)-dimensional hyperplane facing it, is the distance of

some pair of parallel and neighboring lattice hyperplanes. (End of Corollary 2)

The above gives the basis of spectral tests of (d, z, n) generators in the following form.

Theorem 3. The largest distance between parallel and neighboring (l − 1)-dimensional lattice

hyperplanes of a lattice G in the space El is the largest of heights of vertices, in all l-simplexes

spanned by basal sets of lattice vectors with one and the same hypervolume, to (l − 1)-dimensional

base hyperplanes that respectively face the vertices. In an l-simplex formed by a basal set of lattice

vectors of G, the vertex with the largest height is the one that faces the (l − 1)-dimensional base

hyperplane with the smallest hyperarea in the l-simplex. (End of Theorem 3)

It was noted that any unit cells of a lattice of our concern have one and the same volume v. As

cones constructing unit cells, l-simplexes spanned by basal sets of basis vectors, or more briefly

basal l-simplexes, also have one and the same volume v/l!, as multiple integral construction will

readily convince us. Though this explicit value is not much interesting, the overview is transparent;

in a lattice the largest distance of parallel and neighboring (l − 1)-dimensional lattice hyperplanes

may be sought considering only the largest height of vertices in basal l-simplexes with one and the

same volume. This prospect will be a great help to spectral test problems, but there still remains a

multitude of ways to take basal l-simplexes. Which is the noted basal l-simplex with the smallest

base hyperplanes of (l − 1)-dimension? The answer is simple in the ideal form of regular simplexes.

4. Regular Simplexes
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As plots in Fig.1 indicate, the geometrically adequate form of a basal l = 2-simplex forming

lattices of our concern in E2 is a regular triangle. In the general l-dimension it is the form of a

regular simplex, which is defined as follows.

Definition 4. A regular l-simplex with l + 1 vertices is defined by the restriction that all of its

edges, l(l + 1)/2 in number, have one and the same length. (End of Definition 4).

The first notable fact is that the definition determines a unique shape. This is seen inductively. For

some later conveniences we show this process of induction as a corollary.

Corollary 5. For any dimension l ≥ 2 the regular l-simplex Sl with l + 1 vertices is constructed on

a regular (l − 1)-simplex Sl−1 by taking a point in El that is equidistantly located to all l vertices of

Sl−1. The geometrical shape of a regular l-simplex is thus unique.

(Proof) We proceed inductively with the dimension l = 2, 3, · · · . In E2 the regular 2-simplex is the

regular triangle, which is the unique form as the construction with a compass on a line element (a

regular 1-simplex) shows. In E3 with l = 3 a regular 3-simplex should be constructed with a vertex

facing a regular 2-simplex or a regular triangle. Its l + 1 = 4-th vertex should take its position at

equal distances from vertices of the regular triangle. Thus the 4-th vertex can only have its location

on the perpendicular line from the centroid of the base regular 2-simplex, and the unique possible

shape is a regular tetrahedron. This inductive and unique construction of a regular l-simplex

proceeds indefinitely to any dimension l ≥ 2. We complete this proof of existence and uniqueness by

computing the unique form of a regular l-simplex in the following theorem adapted to spectral test

problems. �
Theorem 6. The form of the regular l-simplex is unique for any l ≥ 2. With its volume dl−1/l!

given, this unique form of the regular l-simplex realizes one and the same height µ
(l)
d for any of its

vertex from the base (l − 1)-dimensional lattice hyperplane. There holds

µ
(l)
d = l−1/2(l + 1)(l−1)/(2l)d(l−1)/l.

(Proof) Assume l ≥ 2 and take the following vectors issuing from O:

e1
′ :=

−−→
OQ1 = (b, a, a, · · · , a, a),

e2
′ :=

−−→
OQ2 = (a, b, a, · · · , a, a),

e3
′ :=

−−→
OQ3 = (a, a, b, · · · , a, a),

· · · · · · · · ·
e1−1

′ :=
−−−→
OQl−1 = (a, a, a, · · · , b, a),

el
′ :=

−−→
OQl = (a, a, a, · · · , a, b).

Here a, b �= 0 are constants to be determined by the following two requirements:

(1) These vectors span the volume dl−1 by the absolute value of their determinant.
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(2) They form a regular l-simplex.

Assumed vector forms are linearly independent. They have one and the same ‖ej
′‖2 = (l− 1)a2 + b2

as the square of their Euclidean length for any 1 ≤ j ≤ l. Also, they give (ei
′, ej

′) = (l − 2)a2 + 2ab

as inner products for any i �= j, implying any pair of vectors
−−→
OQj for 1 ≤ j ≤ l form an equal angle

between them. From these relations, or from the direct computation we have:

‖ei
′ − ej

′‖2 = ‖−−→QiQj‖2 = 2(b − a)2, i �= j, 1 ≤ i, j ≤ l.

This implies that l points {Q1, Q2, · · · , Ql} form a regular (l − 1)-simplex, in accordance with what

was seen in induction processes. If only this length is the same as ‖ek
′‖ for any 1 ≤ k ≤ l, the form

spanned is the regular l-simplex as sought. By the way, the unit vector e0
′ := (1, 1, 1, · · · , 1, 1)/l1/2

gives the inner product

(e0
′, ej

′) = {(l − 1)a + b}/l1/2 =: µ (1 ≤ j ≤ l).

This µ is the distance or the height of the vertex O to the centroid of the (l − 1)-dimensional base

hyperplane spanned by {Q1, Q2, · · · , Ql}. Therefore, µ is the one and the same height of any vertex

to its facing base hyperplane of (l − 1)-dimension (which by itself is a regular (l − 1)-simplex) in the

regular l-simplex spanned. Finally, these vectors with unknowns have the determinant,
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b a a · · · a a
a b a · · · a a
a a b · · · a a
· · · · · · · ·
a a a · · · b a
a a a · · · a b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s s s · · · s s
a b a · · · a a
a a b · · · a a
· · · · · · · ·
a a a · · · b a
a a a · · · a b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s 0 0 · · · 0 0
a c 0 · · · 0 0
a 0 c · · · 0 0
· · · · · · · ·
a 0 0 · · · c 0
a 0 0 · · · 0 c

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= scl−1,

with s := (l − 1)a + b and c := b− a. This gives the final restriction dl−1 = scl−1 to determine a and

b. Putting b = ξa, we arrive at the equations to be solved, ξ2 + (l − 1) = 2(ξ − 1)2. Some algebra

gives the same answer to both solutions of ξ, and we have for l ≥ 2,

µ = µ
(l)
d = l−1/2(l + 1)(l−1)/(2l)d(l−1)/l. �

The explicit forms of µ
(l)
d are as follows for 2 ≤ l ≤ 6:

µ
(2)
d := 2−1/231/4d1/2 ≈ 0.93060d1/2,

µ
(3)
d := 3−1/242/6d2/3 ≈ 0.91649d2/3,

µ
(4)
d := 4−1/253/8d3/4 ≈ 0.91429d3/4,

µ
(5)
d := 5−1/264/10d4/5 ≈ 0.91575d4/5,

µ
(6)
d := 6−1/275/12d5/6 ≈ 0.91844d5/6.

Fishman and Moore (1986) quoted the geometry of numbers for the smallest value λ
(l)

d of the largest

distance λ
(l)
d (z) of parallel and neighboring lattice hyperplanes in the l-dimensional lattice Gl(d, z),
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and conducted their epoch making exhaustive spectral tests on primitive roots of the Mersenne prime

modulus d = 231 − 1. Values of {λ(l)

d | 2 ≤ l ≤ 6} in their Eq. (15) are as follows:

λ
(2)

d := µ
(2)
d = 2−1/231/4d1/2 ≈ 0.93060d1/2,

λ
(3)

d := 2−1/6d2/3 ≈ 0.80909d2/3,

λ
(4)

d := 2−1/4d3/4 ≈ 0.84090d3/4,

λ
(5)

d := 2−3/10d4/5 ≈ 0.81225d4/5,

λ
(6)

d := 2−1/231/12d5/6 ≈ 0.77490d5/6.

These are smaller than µ
(l)
d for l ≥ 3. In brief, Fishman and Moore performed spectral tests taking

the global minima of largest distances for neighboring parallel lattice hyperplanes as the values to be

realized by (d, z) generators.

As Theorem 3, as well as forthcoming Theorem 7 and Corollary 8 show, methods of traditional

spectral tests are all natural in the point to look for λ
(l)
d (z), the smallest value of the largest distance

between parallel and neighboring (l − 1)-dimensional lattice hyperplanes, in the lattice Gl(d, z).

However, differences in noted ideal values are not only conspicuous but also give decisive qualitative

differences to the results of spectral tests. For one thing, the new criteria are certainly respecting the

invariance that appropriate ways of shuffling of two uniform and independent random number

sequences should give again a sequence with uniformity and indepence. The method to use two

odd-prime-power moduluses was introduced by the present inventors with the aim to exploit this

invariance, as a promising method to lessen the heavy burden of spectral test computation. To their

dismay, efforts with various trials regarding choices of component generators were not much

successful in obtaining shuffled generators of excellence in the traditional criteria. In contrast, the

adoption of new criteria based on regular simplex values immediately lead inventors to magnificent

successes, which strongly suggests that valuations based on µ
(l)
d are successful in respecting the

noted invariance in the shuffling.

Readers are asked to consult the homepage of inventors, http://www10.plala.or.jp/h-nkzw/, for

details of results. Also, the Catalogue of good and excellent generators will soon be posted in Store

of Nakazawa Patents, http://nakazawa-patents.jp, together with the associated Technological

Reports and Guidances how the successful spectral test computation are to be lead, and some further

knowhows, such as the parallel generation of random numbers, cares in spectral tests and generation

with the use of only double precision computation, and so forth, will also be posted in separate

URLs noted in the Store of Nakazawa Patents.

Before turning to other problems, there is a need to discuss with a lattice G in the space El for

l ≥ 2 with regular l-simplexes as its building blocks, how its largest distance λ between parallel and
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neighboring (l − 1)-dimensional lattice hyperplanes may be expressed. Consider the case l = 2.

Even if a lattice G in the plane E2 may have a regular 2-simplex (or a regular triangle connecting

nearest 3 lattice points of G) as is building blocks, there exist multitudes of other 2-simplex forms

that may give building blocks likewise. From Theorem 3 we have only that λ is the largest height of

vertices taken over all vertices of possible 2-simplexes. However, the restriction, that the areas of any

2-simplexes take one and the same value in a lattice G, stipulates that the shortest base line of

2-simplexes or triangles among all possible shapes should give the largest height of the vertex or λ.

What, then, is the triangle that gives this shortest base line? The answer is manifestly the shortest

lattice vector connecting neighboring lattice points in G, which is certainly the basal regular triangle

or the regular 2-simplex. Therefore, any vertex of any basal regular 2-simplex has this λ as its height.

We may go ahead to a lattice G in E3 that has basal 3-simplexes (or regular tetrahedrons) as its

building blocks. The arguments proceeds just the same, and the problem is to find the regular

3-simplex that has its 2-dimensional base hyperplane (or a triangle forming the side) that has the

smallest 2-dimensional area among all 3-simplexes. The trivial answer is the triangle formed by the

neighboring nearest 3 lattice points of G, or the regular and the smallest triangle (i.e. a regular

2-simplex) that may be formed by lattice points. The distance λ is the height of any vertices of a

regular 3-simplex.

Let us proceed one further step. In the dimension l = 4 the 3-dimensional base hyperplane of a

4-simplex is a 3-simplex (or a tetrahedron) formed by 4 lattice points. The smallest 3-dimensional

hyperarea (or the 3-dimensional volume) that this tetrahedron can have is formed by 4 neighboring

and nearest lattice points in a basal regular 4-simplex, and the distance λ is the height of any vertices

of a regular basal 4-simplex in G.

We shall need no more arguments to see through the following.

Theorem 7. Call a lattice G in the Euclidean space El with l ≥ 2 to be regular if G has regular

basal l-simplexes as its building blocks. A regular lattice G has the largest distance λ between its

parallel and neighboring (l − 1)-dimensional lattice hyperplanes as the height of any vertex in its

basal regular l-simplex to the facing (l − 1)-dimensional base hyperplane. (End of Theorem 7)

This theorem shows that the largest distance λ of parallel and neighboring lattice hyperplanes is a

good discriminator for us to judge whether the lattice G is regular or not. There exist a few matters

to be noted, however. The one is that a regular lattice G in El requires irrational coordinates for its

lattice points, while the lattice Gl(d, z) associated with l-tuples of consecutive random numbers

generated from (d, z) generator are restricted to have integral or rational coordinates, and can never

realize a regular lattice in the strict sense of words. Yet, noted regular lattice structures provide us

with an invaluable chance to exploit the continuity of real numbers to integer problems of Gl(d, z),
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as a kind of Diophantine approximation.

The other point is indicated by the following.

Corollary 8. Let G be a reguglar lattice in the l-dimensional space El. Denote λ for the largest

distance between its parallel and neighboring (l − 1) -dimensional lattice hyperplanes. Infinitesimal

deformations of the geometry of G to G′ make λ change to λ′ > λ. Stated differently, the regular

form of a lattice is geometrically a local minimum in the variation of λ.

(Proof) The largest distance λ is associated with basal l-simplexes of G with the smallest (l − 1)-

dimensional base lattice hyperplanes (which are by themselves regular (l − 1)-simplexes) with the

hyperarea S with the property that any other form of basal l-simplex has its base (l − 1)-simplex

with the hyperarea not smaller than S. Assume that some infinitesimal deformation of the lattice G

to G′, which keeps the hypervolume of basal l-simplexes invariant, can induce the change λ → λ′

with λ′ < λ. We discuss that this is absurd. If the assumption is true, then the largest base hyperarea

S ′ of any basal l-simplexes of the lattice G′ will fulfill S ′ > S. This will contradict the condition that

all basal l-simplexes of G and G′ should have the same hypervolume.12 �
Implications of Corollary 8 is not small. Since reference values satisfy µ

(l)
d > λ

(l)

d for l ≥ 3, and

the geometry of numbers predict that lattices with their λ
(l)
d (z) in the inverval (λ

(l)

d , µ
(l)
d ) may arise,

some lattices Gl(d, z) may give values µ
(l)
d (z) := λ

(l)
d (z)/µ

(l)
d ≤ 1. In fact, a generator listed in

Fishman and Moore (1986) has this property, upon the transformation to the present µ
(6)
d (z):

d = 231 − 1, z = 1226874159, λ
(6)
d (z) = 1.18426026, µ

(6)
d (z) = 0.99917993 < 1.

This primitive root multiplier z gives

λ
(2)
d (z2) = 3.51885751, λ

(2)
d (z3) = 2.19846315,

as posted in List 2 (c) of I. Therefore, the multiplier z cannot be passable to start with. But it is

interesting what arises in the space E6 with the valuation µ
(6)
d (z) < 1.

The present inventors insist to post Corollary 8 not as a conjecture. This is based on experiences

of the computation of spectral tests. A generator (p, z) of a prime p and its primitive root z is tested

by the 2nd degree spectral tests of (p, zk) for 1 ≤ k ≤ 12. Two generators (pj , zj) for j = 1, 2, taken

from sets of primes and their primitive roots that passed the 1st stage 2nd degree tests, are then

combined to a generator (d, z) by d = p1p2 and z ≡ zj mod (pj), generators (d, zk) for 1 ≤ k ≤ 6

12The reasoning here is incomplete, and a more rigorous arguments will be needed. Despite efforts inventors could not
find a truly convincing proof, though the conclusion seems all natural. Thus, this Corollary will need to be stated as a
conjecture. However, there exist side evidences obtained from computations of spectral tests that support this Corollary;
see later remarks. We therefore let this Corollary go as it is. Inventors shall be deeply obliged if Readers kindly com-
municate to N. and H. Nakazawa in nmail@nakazawa-patens.jp; inventors then shall post them, if not inconvenient to
contributors, in this homepage with contributors’ names.
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are examined by the 2nd stage 2nd degree tests, and finally (d, z) underwent 3rd to 6th degree

spectral tests. Watching how the combined generator passers behave in the final 3rd to 6th degree

tests,13 we saw no trace of valuations that are smaller than or equal to 1. This indicates that the first

stage 2nd degree tests will be efficient enough to expel exotic forms of lattices with µ
(l)
d (z) ≤ 1 for

l ≥ 3, and to select only generators that are in the attracting basins of local minima at regular

l-simplex forms. We should admit that this is yet not completely proven. Theoretical as well as

computational contributions from readers are waited for at nmail@nakazawa-patents.jp.

5. Cocluding Remarks

5.1. The Claim Stated in the Patent Application of Invention 2

The claim of the patent of the present invention applied to Patent Offices of Nations are as follows.

Please note that there are a few adaptations of symbols to the present report.

Claim14

What is claimed is a new method of spectral tests, on multiplicative congruential generator

(d, z, n) or (d, z) comprising an odd integer d for the modulus and an integer z coprime

with d for the multiplier and an integer n coprime with d for the seed and generating the

sequence of integers {nk :≡ nzk−1 mod (d)| 1 ≤ nk ≤ d, k = 1, 2, · · · } consecutively

and giving the output random number sequence by realizing the arithmetic {vk := nk/d|
0 ≤ vk ≤ 1, k = 1, 2, · · · }, the new method being based on the valuation of the geometrical

form of the lattice Gl(d, z), wherein l-consecutive integer outputs of the generator (d, z, n)

{Qk := (mk, nk+1, · · · , nk+l−1)| k = 1, 2, · · · } take their seats, through the computation of

the largest distance λ
(l)
d (z) between parallel and neighboring lattice hyperplanes of Gl(d, z)

and evaluating µ
(l)
d (z) := λ

(l)
d (z)/µ

(l)
d of the generator (d, z) on the basis of new reference

values

µ
(l)
d := l−1/2(l + 1)(l−1)/(2l)d(l−1)/l, l ≥ 3,

and judging (d, z) to be passable if conditions

1 < µ
(l)
d (z) < Rl, 3 ≤ l ≤ 6,

are fulfilled for the prescribed levels {Rl > 1| 3 ≤ l ≤ 6}.

13Luckily or unluckily to say, noted tests take quite long time, and outputting results of tests of all degrees gives no
burden to the computation.

14In the specification submitted to Patent Offices of Nations there was an omission of the restriction for the integer d
that d > 0 should hold. We post it below with this flaw corrected. Though this restriction is obvious by the statement
1 ≤ nk ≤ d given further below, inventors express their sincere regrets for their carelessness to Patent Offices of Nations.
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5.2. Procedures for Spectral Tests

Let there be given a lattice G in the space El for l ≥ 2. Spectral tests aim to compute the largest

distances between parallel and neighboring lattice hyperplanes, and Theorem 3 reduces the problem

to the search of the basal l-simplex that has the vertex with the largest height from its facing base

(l − 1)-dimensional lattice hyperplane among all basal l-simplexes with one and the same

hypervolume. If the lattice G has a regular basal l-simplex i.e. if G is a regular lattice, the search is

not necessary as shown in Theorem 7. A general lattice does not give us such a simple circumstance.

And, even if the lattice might be regular, it may happen that we do not know of the existence of a

regular basal l-simplex. In such general cases we should perform spectral tests to obtain the noted

largest distance λ between parallel and neighboring (l − 1)-dimensional lattice hyperplanes, and

give the valuation µ := λ/µ to infer how close the lattice G is to the regular case.15

We now discuss the procedure of this search for the largest distance between (l − 1)-dimensional

parallel and neighboring lattice hyperplanes, assuming that a set of basis vectors {e1, e2, · · · , el} of

G is given. The search is facilitated by the well-known dual lattice vectors.

Definition 9. Let row vectors {e1, e2, · · · , el} be a set of basis vectors of G in El with l ≥ 2.

Denote M for the matrix formed by these basis vectors as rows.

(A) Let M−1 be the inverse matrix of M , and row vectors of tM−1 be denoted as {f 1, f2, · · · , f l},

where tM−1 is the transpose of the matrix M−1. These (row) vectors {f 1, f2, · · · , f l} are named as

dual basis vectors corresponding to the basal set {e1, e2, · · · , el} of G.

(B) The lattice G∗,

G∗ := {c1f1 + c2f 2 + · · ·+ clf l| cj runs all integers for 1 ≤ j ≤ l},

spanned by dual lattice basis vectors will be called the dual lattice G∗ of G, (End of Definition 9)

Corollary 10. Let G be a lattice in El. The dual lattice G∗ is unique irrespective of the choice of

the set of basis vectors that defines the set of dual basis vectors.

(Proof) Let there be given a basal set of lattice vectors {e1, e2, · · · , el}, the matrix M formed by

them as rows, and the matrix M∗ := tM−1 of dual lattice row vectors. Any other choice of basis

15Here should be noted a difficult problem arising with the higher dimension l. We have noted that in El a generator
(d, z) gives only N ≈ d/2 or d/4 of consecutive l-tuples. Therefore, the hypercube of unit volume can be divided
meaningfully only into subhypercubes of side length 1/d1/l in each of which one consecutive l-tuple of random number
point can be distributed, if at all. If d ≈ 252 is the case, we see little problems with the consecutive 2-points emitted,
because l = 2 gives 1/d1/2 ≈ 2−26 is sufficiently small. But l = 6 gives 1/d1/l ≈ 2−8 ≈ 1/256. Therefore, the
distribution in subhypercubes in E6 may be discussed only in a rather coarse scale. Is it that the good distribution of
seats in this coarse scale in fact ensure the good statistical distribution of random number points? We do not have a
decisive answer as yet. However, one certain thing is that a regular distribution of seats will be less problematic than
the distribution of seats concentrated in fewer number of (l − 1)-dimensional lattice hyperplanes with large separation
between them. Thus we demand that the results of 2 ≤ l ≤ 6 should be good for a generator to be excellent, admitting, as
we hear to be from predecessors in random number problems, the lower degree performances, in particular those of the
2nd degree tests, will be the most significant.
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vectors of the lattice G will give the matrix M ′ = UM with a unimodular matrix U . Therefore,

M = U−1M ′ holds true, and we have

M∗ = t(U−1M ′)−1 = tU t(M ′)−1 = tU(M ′)∗.

Since tU is a unimodular matrix, the lattice G∗ spanned by the basal set of row vectors of M∗ and

the lattice (G′)∗ spanned by those of tU(M ′)∗ are identical. �
We are now nearing the principle of spectral tests.

Theorem 11. Let there be given in El a lattice G. The largest distance λ, between paralle and

neighboring (l − 1)-dimensional lattice hyperplanes of G, is given by the following:

λ = 1/‖fmin‖.

Here fmin is the dual lattice vector f ∈ M∗ whose non-zero Euclidean length ‖f‖ is the shortest.

(Proof) From Theorem 3 λ is a height of a vertex in an l-simplex spanned by a basal set of lattice

vectors of G. Let the basal set of vectors, which are of course a set of basis vectors, of G be {−−−→Q0Q1,
−−−→
Q0Q2, · · · ,

−−→
Q0Ql}. Consider the height of the vertex Q0 to the (l − 1)-dimensional facing base

hyperplane spanned by e2 :=
−−−→
Q1Q2, e3 :=

−−−→
Q1Q3, · · · , el :=

−−→
Q1Ql. We use again the trick that these

(l − 1)-vectors and e1 := −−−−→
Q0Q1 are a unimodular transformation of the given set of basal vectors,

so that {e1, e2, · · · , el} may be taken as the basis vectors, which give the dual basis (row) vectors

{f 1, f2, · · · , f l}. The definition of dual basis vectors may be written in the form of inner products,

(ej, f k) = δjk, 1 ≤ j, k ≤ l.

Therefore, the dual vector f 1 is orthogonal to all of {e2, e3, · · · , el}. Put λ for the height of the

vertex Q0 in the originaly given basal l-simplex to the facing (l − 1)-dimensional base hyperplane

which is now spanned by {e2, e3, · · · , el}. We have at once

λ = |(e1, f1)|/‖f1‖ = 1/‖f 1‖.

Taking the largest of this value over all basal l-simplexes (hence over all basal l simplexes of dual

lattice) and over all their vertices, we obtain the assertion. �
The final clue to spectral tests requires the explicit form of the Gl(d, z) lattice. We note for clarity

again basis vectors of this lattice given previously in p. 3,

e1 := (1, z, z2, z3, · · · , zl−2, zl−1),

e2 := (0, d, 0, 0, · · · , 0, 0),

e3 := (0, 0, d, 0, · · · , 0, 0),

e4 := (0, 0, 0, d, · · · , 0, 0),
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· · · · · · · · · · · · · · · · · · ,

el−1 := (0, 0, 0, 0, · · · , d, 0),

el := (0, 0, 0, 0, · · · , 0, d).

Their dual basis vectors are traditionally and conveniently taken in the following form:

f1
′ := (d, 0, 0, 0, · · · , 0, 0),

f2
′ := (−z, 1, 0, 0, · · · , 0, 0),

f3
′ := (−z2, 0, 1, 0, · · · , 0, 0),

f4
′ := (−z3, 0, 0, 1, · · · , 0, 0),

· · · · · · · · · · · · · · · · · · ,

f l−1
′ := (−zl−2, 0, 0, 0, · · · , 1, 0),

f l
′ := (−zl−1, 0, 0, 0, · · · , 0, 1).

It will be at once to see that these give the matrix M∗′ with M tM∗′ = dI . Therefore, fmin
′/d should

replace fmin in Theorem 11. We thus have:

Corollary 12. In the lattice Gl(d, z) of the multiplicative congruential generator (d, z), the largest

distance λ between parallel and neighboring (l − 1)-dimensional lattice hyperplanes is given by

λ = d/‖fmin
′‖,

where fmin
′ is the shortest vector in the traditional dual lattice of spectral tests spanned conveniently

by the set of integer basis vectors{f 1
′, f 2

′, · · · , f l
′}. (End of Corollary 12)

In this form the search of the traditional shortest dual integer vector is facilitated with integer

cartesian coordinates. It is not that all of vectors f ′ = (x1, x2, · · · , xl) with integer coordinates are

dual lattice vectors. But the discrimination is easy.

Lemma 13. A vector f ′ = (x1, x2, · · · , xl) with integer cartesian coordinates is a traditional dual

lattice vector for the lattice Gl(d, z), if and only if the following holds true:

x1 + zx2 + z2x3 + · · · + zl−2xl−1 + zl−1xl ≡ 0 mod (d).

(Proof) Suppose that the condition is satisfied. Then an integer k exists and gives

x1 + zx2 + z2x3 + · · ·+ zl−2xl−1 + zl−1xl = kd,

f ′ = (kd − zx2 − z2x3 − · · · − zl−2xl−1 − zl−1xl, x2, x3, · · · , xl−1, xl)

= kf 1
′ + x2f 2

′ + x3f3
′ + · · · + xl−1f l−1

′ + xlf l
′.

This is an integral linear combination of {f 1
′, f2

′, · · · , f l
′} or a dual lattice vector in the sense of

spectral tests, and the if part is proved. Take a vector f ′ with integral coefficients {c1, c2, · · · , cl} in
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the form f ′ = c1f1
′ + c2f2

′ + · · ·+ clf l
′. We have

f ′ = (c1d − zc2 − z2c3 − · · · − zl−1cl, c2, c3, · · · , cl).

Therefore, the condition x1 + zx2 + z2x3 + · · · + zl−2xl−1 + zl−1xl = c1d ≡ 0 mod (d) is satisfied.

This proves the only if part. �

5.3. An Example

Actual procedures of spectral tests form a gigantic conglomerate of arts of computing with integer

arithmetic, together with a heap of efforts needed for optimization. The restriction to integers is a

great help in that any length of computations do not introduce any accumulation of errors, such as

the truncation and round off errors of real arithmetic. But we need to be careful with a modulus d as

large as d ≈ 248; relevant integers on the stage will readily give their products which go out of 8

Bytes limitations. If you are able to use 16 Bytes integers, you should do so at any cost. The

constrution of d with two large integers will lessen such burdens by the powerful aid of Sun Tzu’s

theorem, but at the expense of longer computing times.

From their experiences, the inventors feel that a solved problem will be a great help in debugging

programs, in estimating necessary computing times, and (of course) in feeling how laborious the

finding of an excellent generator could be. Thus we close this report with one such example, which

might be not very much attractive, but which in fact is a great progress compared with the precedents.

The modulus d is constructed as

d = 2473412495072041 = p1p2 ≈ 251.14, p1 = 78825767, p2 = 31378223.

The multiplier z consists of primitive roots z1 of p1 and z2 of p2;

z1 = 13798799, z2 = 588527, z = 1629813080852781 ≡ zj mod (pj), j = 1, 2.

The answer to be obtained with (d, z) is the following:

degree of tests 2 3 4 5 6
spectral test valuations 1.16151106 1.24863727 1.23847495 1.14057211 1.12413372

multiplier z2 z3 z4 z5 z6

2nd degree valuations 1.05738174 1.13282851 1.24149179 1.16041734 1.21926692

Trials should be commenced with 2nd degree tests which will soon reward the noted results. In

contrast, 5th and 6th degree tests are time consuming. The computer of the inventors took about 3

days for them. But, of course, the true difficulty is not in this particular computation; it is in the

time-consuming search process with uncertain prospect over which a sudden reversal brings us a
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conviction of success. The inventors sincerely wish willing explorers to join the exploration in the

desert of integers with all barren outlook, and experience the joy of finding a clear spring or a

brilliant gem stone, for generators with still longer periods and brighter excellences.
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